Barclay Roman

Adams – 2:00 Class

Abbreviated Review

October 2, 2007

*Information taken from Class Notes, Online Slides, and the Book
What have we discussed about languages so far this semester?


-Some Historical Information


-ANSI (American National Standards Institute)



-ISO (International Standard Organization)


-Machine Code



-Assembly Language



-FORTRAN



-was the first high level programming language




-IBM




-John Backus (team effort)




-Early FORTRAN did not have recursive capabilities



-Pascal




-created by Niklaus Wirth (sole effort)




-created as a teaching language for computer science students




-named after Blaise Pascal





-French mathematician of the 17th century



*More in depth info can be found in the Chapter 2 Slides (1-20)

-Reasons Why We Study Programming Languages


-Increased Ability to express ideas


-Improved background for choosing appropriate languages



-Increased ability to learn new languages



-Better understanding of significance of implementation



-Overall advancement of computing

-Application Domains


-Scientific applications



-Large number of floating point computations




-FORTRAN



-Business applications




-Product reports, use decimal numbers and characters




-COBOL



-Artificial intelligence




-Symbols rather than numbers manipulated




-LISP



-Systems programming




-Need efficiency because of continuous use




-C



-Web software




-Eclectic collection of languages:




-Markup (XHTML)





-Scripting (PHP)





-General-purpose (Java)

-Language Evaluation Criteria



-Readability (ease with which programs can be read and understood)



-Overall simplicity






-A manageable set of features and constructs

-Few feature multiplicity (means of doing the same operation)






-Minimal operator overloading




-Orthogonality

-A relatively small set of primitive constructs can be combined in a relatively small number of ways





-Every possible combination is legal




-Control statements






-The presence of well-known control structures




-Data types and structures

-The presence of adequate facilities for defining data structures




-Syntax considerations






-Identifier forms: flexible composition

-Special words and methods of forming compound statements

-Form and meaning (self-descriptive constructs, meaningful keywords)


-Writability (ease with which a language can be used to create programs)



-Simplicity and orthogonality
-Few constructs, a small number of primitives, a small set of rules for combining them




-Support for abstraction

-The ability to define and use complex structures or operations in ways that allow details to be ignored




-Expressivity

-A set of relatively convenient ways of specifying operations

-ex. The inclusion of FOR statements in many modern languages



-Reliability (conformance to specifications)



-Type checking




-Testing for type errors




-Exception handling





-Intercept run-time errors and take corrective measures




-Aliasing

-Presence of two or more distinct referencing methods for the same memory location




-Readability and Writability

-A language that does not support “matural” ways of expressing an algorithm will necessarily use “unnatural” approaches, and hence reduced reliability


-Cost (the ultimate total cost)



-Training programmers to use language




-Writing programs (closeness to particular applications)




-Compiling programs




-Executing programs




-Language implementation system (availability of free compilers)




-Reliability (poor reliability leads to high costs




-Maintaining programs



-Others




-Portability

-The ease with which programs can be moved from one implementation to another




-Generality





-The applicability to a wide range of applications




-Well-definedness

-The completeness and precision of the language’s official definition
-Language Translation Methods


-Pure Interpretation



-No translation

-Programs are interpreted by another program known as an interpreter

-Easier implementation of programs (run-time errors can easily and immediately be displayed)

-Slower execution (10 to 100 times slower than compiled programs)

-Often requires more space

-Becoming rare on high-level languages

-Significant among web scripting languages (JavaScript)


-Compilation

-Translate high-level program (source language) into machine code (machine language)
-Slow translation, fast execution

-Do not have to be re-translated to machine language every time they are run

-Process:

-Lexical Analysis

-Converts characters in the source program into lexical units





-Syntax Analysis

-Transforms lexical units into parse trees which represent the syntactic structure of program





-Semantics Analysis






-Generate intermediate code





-Code Generation






-Machine code is generated



-Hybrid Implementation



-Compromise between compilers and pure interpreters

-Source code is compiled to byte code




-Byte code is then interpreted when the program is executed




-Java is an example of this



-Just-In-Time Implementation Systems



-Preprocessors

-Language Paradigms


-Imperative/Procedural
-Central features are variables, assignment statements, and iteration




-C, Pascal, FORTRAN



-Functional

-Main means of making computations is by applying functions to given parameters

-LISP, Scheme



-Logic




-Rule-based (rules are specified in no particular order)




-Prolog



-Object-oriented




-Data abstraction, inheritance, late binding




-Java, C++



-Markup

-New; not a programming per se, but used to specify the layout of information in Web documents

-XHTML, XML
-Basic Statements


-Output



-Input



-Assignment



-Iteration



-Selection

-Ways of Describing Languages


-Syntax
-The form or structure of the expressions, statements, and program units

-Backus-Naur Form (BNF) and Context-Free Grammars

-Most widely known method for describing programming language syntax




-Context-Free Grammars





-Developed by Noam Chomsky in the mid-1950s

-Language generators, meant to describe the syntax of natural languages

-Define a class of languages called context-free languages




-Backus-Naur Form (BNF)





-Invented by John Backus to describe Algol 58





-Equivalent to context-free grammars





-A metalanguage used to describe another language

-Abstractions are used to represent classes of syntactic structures (act like syntactic variables / non-terminal symbols)

-Fundamentals:


-Non-terminals = BNF abstractions


-Terminals = lexemes and tokens

-Grammar = a collection of rules (finite and nonempty)


-Start Symbol


-Set of Productions


-Set of Terminals


-Set of Non-Terminals

-Rule = consists of a Left-Hand Side (LHS) and a Right-Hand Side (RHS) that are made up of terminal and non-terminal symbols

-Abstraction/Non-Terminals can have more than one RHS

-Derivation is a repeated application of rules, starting with the Start Symbol and ending with a sentence (all terminal symbols)

-Leftmost Derivation and Parse Trees

-Ambiguity

-A grammar is ambiguous if it generates a sentential form that has two or more distinct parse trees




-Extended BNF





-Improves readability and writability of BNF

-Use of brackets, parentheses, vertical bars, and braces to better signify meanings and importance




-Grammars and Recognizers



-Semantics




-The meaning of the expressions, statements, and program units



-Together they provide a language’s definition

-Special Words


-Keyword

-A word of a programming language that is special only in certain contexts



-Reserved Words

-A special word of a programming language that cannot be used as a name


-In FORTRAN:




-Non-Executable





-END, ERR, FORMAT, CONTINUE, DATA




-Executable





-STOP, IF, GOTO, READ, WRITE, DO, RETURN, CALL


-In Pascal:
-and, array, begin, case, const, div, do, downto, else, end, file, for, forward, function, goto, if, in, label, mod, nil, not, of, or, packed, procedure, program, record, repeat, set, then, to, type, until, var, while, with

-Data Types


-FORTRAN Data Types



-Simple/Primitive





-Integer





-Real





-Double Precision





-Logical/Boolean





-Character




-Structured





-String





-Array





-Complex





-Record



-Pascal Data Types



-Simple





-Ordinal






-Enumerated






-Char






-Integer






-Boolean






*Subrange





-Real




-Pointer




-Structured





-Record





-Array





-File





-Set





*Packed






-String



-Ada Data Types
-Atomic





-Scalar






-Discrete







-Enumeration








-Character








-Wide Character








-Wide Wide Character








-Boolean







-Integer








-Signed








-Modular






-Real







-Floating Point







-Fixed Point








-Binary








-Decimal





-Access




-Composite





-Array





-Record

-Built-In Functions


-In FORTRAN:



-MOD(numerator, denominator) – returns the remainder



-ACHAR(num1) – gives the numth character



-ABS(number) – returns the absolute value



-MAX(num1, num2) – finds the maximum value



-IFIX(realNumber) – returns something



-SQRT(integer) – finds the square root



-LOG(anyTypeNumber) – returns the natural log of x



-RAND() – returns a random number




-COS(realNumber) – returns cosine




-SIN(realNumber) – returns sine




-TAN(realNumber) – returns tangent




-SIND(realNumberOfDegrees) – returns an integer (truncated real)




-FLOOR(realNumber) – returns an integer (truncated real)




-MIN(listOfNumbers) – finds the minimum value in a list




-ATAN(realNumber) – returns the inverse of tangent in radians




-CEILING(realNumber) – returns an integer




-SRAND(integerNumber) – sets the seed for the RAND() function




-EXP(realNumber) – returns e to the real number power




-ASIN(realNumber) – returns the inverse of sine in radians




-LEN(string) – length of string



-In Pascal:




-Required Functions:





-Arithmetic

-abs(x), sqr(x), sqrt(x), sin(x), cos(x), arctan(x), ln(x), exp(x)





-Transfer






-trunc(x), round(x)





-Ordinal






-ord(x), chr(x), succ(x), pred(x)





-Boolean






-odd(x), eoln(x), eof(x)




-Required Procedures:





-Input and Output






-read, readln, write, writeln





-File Handling






-rewrite(f), reset(f), put(f), get(f), page(f)





-Dynamic Allocation






-new(p), dispose(p)





-Transfer






-pack, unpack


-Subprogram Types 


-In FORTRAN:




-STATEMENT FUNCTION




-FUNCTION





-Returns only 1 value

-Should always return a value

-It does it by assignment to the FUNCTION name



-SUBROUTINE





-May return 0, 1, or many values





-Values are returned through the parameter list



-Parameter Passing Modes


-Static Scope Rules




-FORTRAN

-Each subroutine or function is like a walled object which only communicates with other parts of the program through the parameter list




-Pascal





-Has access to variables declared locally and non-locally
-Languages



-FORTRAN



-Pascal



-Alice

-Computer Instruction Processing



-Three Steps:


-Fetch the instruction




-Decode the instruction




-Execute the instruction

