Banda Rasoul

Sec 1

Abbreviated Review

October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· FORTRAN

· This language was developed because of the capabilities of the IBM 704

· First compiled high level language that took advantage of floating-point and indexing hardware of the IBM 704
· FORTRAN was intended to perform mathematical functions created by a team led by John Backus at IBM on 1952.

· FORTRAN 0 was modified and released as FORTAN I in 1957. FORTAN I added variable names of up to six characters, FORTRAN 0 max of 2 characters

· Then cam FORTRAN II in the spring of 1958. It fixed bugs in FORTRAN I and added features such as independent compilation of subroutines.
· FORTRAN III came but never was widely used but FORTRAN IV became widely used and later was standardized as FORTRAN 66. It added features such as explicit type declarations, logical if structure, and capabilities of passing subprograms as parameters to other subprograms.

· Later FORTRAN 77 came in to play and added char string handling, logical loop control, and an if with and optional else.
· In 1992 FORTRAN 90 was introduced at it was really different form the 77. It added collection of functions built in for array operations. Arrays could be allocated and deallocated dynamically. Also added record which were called derived types, and pointers were added.
· BNF

· It is the formal notation for specifying programming language syntax. And stands for Backus-Naur form
· Developed for describing ALGOL 58

· BNF is the most popular method of concisely describing programming language syntax.

· It is very similar to Noam Chomskey’s context-free grammars.

· BNF has non-terminals which is stuff in < > and what was not in < > were terminals
· The start of the program was simply the word program

· BNF is a met language- a language that describes another language.

· Pascal
· language is named after mathematician Pascal by Niklaus Wirth created as a teaching language. Early compilers translated it to P-code

· A published definition of Pascal appeared in 1971.
· The features that Pascal is recognized for came from earlier languages such as ALGOL 68 and COBOL and PL/I.

· Pascal was used mostly for teaching programming up till the late 1990s

· Pascal had deficiencies such as lack of separate compilation. This lead to creation of Turbo Pascal.

· GoTO statements considered harmful and made languages hard to understand was a letter that was written to the Communications of the ACM that generated a lot of controversy

· reasons why we study programming languages

· Increased capacity to express ideas

· Improved background for choosing appropriate languages

· Increased ability to learn new languages.

· Better understanding of the significance of implementation

· Overall advancement of computing

· application domains

· Scientific applications

· The first digital computer in the 1940s was invented for scientific applications

· Business Applications

· COBOL first successful high level language for business

· The coming of PCs introduced even small business to computing.

· Artificial Intelligence

· Symbolic rather then numeric computations

· First Programming language for AI is the language LISP in the 1959.

· Then Prolog became popular. It was logic programming

· Systems Programming

· Operating systems

· They must be efficient and fast execution with low level features to interface with devices

· IBM mainframes used PL/S which is a dialect of PL/I.

· UNIX is entirely written in C which makes it really portable.
· Web Software

· Has wide variety of languages such as XHTML, java, PHP and much more

· language evaluation criteria

· Readability

· How easy it is to understand

· Before the 70s languages were designed from the point of the computer

· After the 70s languages were designed from the point of computer users.

· Contribution to readability

· Overall simplicity- language with a large number of basic constructs is more difficult to learn then one with a smaller number of them.

· Orthogonally- a relatively small set of primitive constructs can be combined ina relatively small number of ways to build the control and data structures of the language. Example of lack of orthogonally in C is that arrays can’t be returned from functions but records can be returned from functions.

· Control Statements- a bad control statement is the goto statement, currently control statement design of a language is less of a factor in readability then it was in the past

· Data types and Structures- Using Booleans types instead of numbers adds to readability
· Syntax Considerations

· Identifier forms- restricting identifiers to very short lengths reduces readability.

· Special Words- such as reserved words

· Form and meaning- designing statements that appear similar to their purpose increased readability.

· Writability- how easily a language can be used to create programs for a chosen problem domain. Writability depends a lot of readability.
· Support for abstraction- abstraction means the ability to define and define and then use complicated structures or operations in ways that allow many of the details to be ignored. Use of subprograms to implement sort algorithms
· Expressivity- very powerful operations that perform grate deal of computation with a very simple program.

· Reliability

· Type checking- checking for type errors. C was really bad at type checking but java is very good at it.

· Exception Handling- intercept run-time errors and take corrective measures with out crashing.

· Aliasing- having two or more distinct referencing methods or names for the same memory cell. Pointers
· Readability and Writeability effect Reliability.

· Cost

· The cost of training programs to use a language’

· The cost of writing programs in a langurge

· language translation methods

· encoding

· decoding

· compilation

· interpretation

· Hybrid Implementations systems

· language paradigms

· object-oriented- Smalltak, java, C++
· procedural- fortran
· functional- C
· event-based- Artificial intelligence LISP
· basic statements

· ways of describing languages- Language evaluation
· special words- reserved words
· data types- atomic, composite, scalar, arrays, records, discrete, integers, characters, booleans
· built-in functions-
· subprogram types

· functions return A single value

· one which returns multiple values or none at all – returns values through the parameter list

· parameter passing modes

· pass by copy

· pass by name

· pass by referece

· pass by result

· pas by value result

· Languages

