Name Chad Parker
Abbreviated Review1 – 2:00 class
October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· machine code

· Assembly language

· FORTRAN was the first high level programming language – IBM – john Backus – team effort

· Pascal was created by Niklaus Wirth named after Blaise Pascal who was a French mathematician of the 17th century - created as a teaching language for computer science students – one person effort
· reasons why we study programming languages

· Increased ability to express ideas

· Improved background for choosing appropriate languages

· Increased ability to learn new languages

· Better understanding of significance of implementation

· Overall advancement of computing
· application domains

· Scientific applications

· Large number of floating point computations

· Fortran

· Business applications

· Produce reports, use decimal numbers and characters

· COBOL

· Artificial intelligence

· Symbols rather than numbers manipulated

· LISP

· Systems programming

· Need efficiency because of continuous use

· C

· Web Software

· Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g., PHP), general-purpose (e.g., Java)
· language evaluation criteria

· readability

· simplicity

· a language with a large number of basic constructs is more difficult to learn than one with a smaller number of them.

· Feature multiplicity – the number of different ways a language has to accomplish a particular operation(i.e. increment, decrement in Java)

· Operator overloading

· Orthogonality

· A relatively small set of primitive constructs can be combined in a relatively small number of ways

· Every possible combination is legal
· control statements
· during the 70s, BASIC and Fortran lacked the control statements that allow strong restrictions on the use of GOTO statements

· this prevented programs in these languages from being easily read

· the design of control statements are less important now than in the past

· data types and structures

· are there adequate types and structures to properly design and write a program?

· i.e. using a Boolean data type instead of a arbitrary integer flag, which makes the program harder to follow

· Syntax considerations

· Identifier forms: flexible composition

· Special words and methods of forming compound statements

· Form and meaning: self-descriptive constructs, meaningful keywords
· Writability

· Simplicity and orthogonality

· Few constructs, a small number of primitives, a small set of rules for combining them

· Support for abstraction

· The ability to define and use complex structures or operations in ways that allow details to be ignored

· Process –i.e. use of a subprogram to implement a sort algorithm

· Data – i.e. abstraction of a BinaryTree node to a simple class with two pointers and an integer

· Expressivity

· A set of relatively convenient ways of specifying operations

· Example: the inclusion of for statement in many modern languages
· Reliability

· Type checking

· Testing for type errors

· Exception handling

· Intercept run-time errors and take corrective measures

· Aliasing

· Presence of two or more distinct referencing methods for the same memory location

· Readability and writability

· A language that does not support “natural” ways of expressing an algorithm will necessarily use “unnatural” approaches, and hence reduced reliability
· Cost

· Training programmers to use language

· Writing programs (closeness to particular applications)

· Compiling programs

· Executing programs

· Language implementation system: availability of free compilers

· Reliability: poor reliability leads to high costs

· Maintaining programs
· language translation methods

· Compilation

· Programs are translated into machine language

· Very fast program execution

· Lexical analyzer gathers the characters of the source program into lexical units. (i.e. indentifiers, special words, operators, and punctuation symbols)

· Syntax analyzer takes the lexical units from the lexical analyzers and uses them to construct parse trees, which represent the syntactic structure of the program

· The intermediate code generator produces a program in a language that is in a level between the programming language and assembly language

· The semantic analyzer is an integral part of the intermediate code generator. It checks for errors that are difficult to detect during syntax analysis(i.e. type errors)

· Symbol table contains information such as type and attribute information for each user-defined name

· The code generator translates the optimized intermediate code in its machine language equivalent.

· Pure Interpretation

· Programs are interpreted by another program known as an interpreter

· Advantage – allows easy implementation of many source-level debugging operations because all run-time error messages can refer to source-level units

· Statement decoding – slows down the execution of a program because a statement must be translated everytime it is used regardless of how many times that is

· Hybrid Implementation Systems

· A compromise between compilers and pure interpreters
· A high-level language is translated to an intermediate language to allow easy interpretation

· language paradigms
· Imperative

· Central features are variables, assignment statements, and iteration

· Examples: C, Pascal

· Functional

· Main means of making computations is by applying functions to given parameters

· Examples: LISP, Scheme

· Logic

· Rule-based (rules are specified in no particular order)

· Example: Prolog

· Object-oriented

· Data abstraction, inheritance, late binding

· Examples: Java, C++

· Markup

· New; not a programming per se, but used to specify the layout of information in Web documents

· Examples: XHTML, XML

· basic statements

· output

· programmers need ways to view the data that they are creating/modifying
· output can be directed to the screen, a file, or a printer

· input

· programming languages must allow for a variety of ways for programmers to collect input

· they include gathering input by reading it in from a file or gathering from the user via keyboard

· assignment

· all languages must provide a way to set values to data variables

· iteration
· iteration statements such as for-loops, while-loops, and do-while-loops are used to determine how many times a given statement or set of statements while be executed
· selection
· evaluate conditions and depending on the result, execute certain program statements or none at all

· allows certain events and statements to exexcute depending on the result of certain conditional statements

· i.e. if, if-else, case statements
· ways of describing languages

· BNF (1959)

· Invented by John Backus to describe Algol 58

· BNF is equivalent to context-free grammars

· BNF is a metalanguage used to describe another language

· In BNF, abstractions are used to represent classes of syntactic structures
· Fundamental parts

· Non-terminals: BNF abstractions

· Terminals: lexemes and tokens

· Grammar: a collection of rules

· A rule has a left-hand side (LHS) and a right-hand side (RHS), and consists of terminal and nonterminal symbols

· A grammar is a finite nonempty set of rules

· An abstraction (or nonterminal symbol) can have more than one RHS
· Grammar Example – program is start symbol

1. <program> (<stmts>

2. <stmts> (<stmt> | <stmt> ; <stmts>

3. <stmt> (<var> = <expr>

4. <var> (a | b | c | d

5. <expr> (<term> + <term> | <term> - <term>

6. <term> (<var> | <const>

7. <const> (3 | 7 | 1337 | 23.7

· Start symbol

· Mini-language CORE

· non-terminals were enclosed in angle brackets < >

· terminals are not

· program was the start symbol

· A metalanguage is a language used to describe a language

· ::= replaced the à in the BNF grammar on the yellow sheet

· the vertical bar | means or
· special words

· used to make programs more readable by naming actions to be performed

· also used to separate the syntactic entities of programs.

· Generally classified as reserved words

· Keyword

· Word of a programming language that is special only in certain contexts (i.e. In Fortran, assigning 45.2 to Real, which is also a data type)

· Reserved word

· Special word of a programming language that cannot be used as a name and are always special regardless of context

· data types

· simple types

· integer

· many computers now support several sizes of integers

· i.e. Java – byte, short, int, long

· real
· double precision character
· Boolean

· Must be either true or false

· Structured types

· String

· Consist of sequences of characters

· If not defined as a primitive type, string is usually stored in arrays of single characters and referenced as such in the language (i.e C++)

· Array

· Homogeneous grouping of data elements in which a single element is identified by its position in the group

· Complex

· Record

· Fundamental difference between record and array- record can contain different data types

· Records should be used when either different data types must be stored together or if not all data contained in the fields is evaluated the same

· Fields within a record are not usually referenced by indexes

· Fields are named with identifiers, which are used to make references to the field

· In some languages, records are allowed to include unions

· built-in functions

· functions that come preinstalled in a program

· they eliminate the need for programmers to create methods to perform very crucial and often used tasks.

· i.e. Java provides a length() function that returns the length of an array. Many languages do not provide built-in support for this function. Therefore a programmer would have to write a length() function in a language where it is not provided upon install of the compiler.

· subprogram types

· parameter passing modes

· Pass by value – the value of a given data object is copied and passed into a code block as a

· Pass by reference – a pointer to a given data type object is passed as a parameter

· This object can then be referenced and altered within a code block

· Languages
· Fortran

· Fortran I:1957

· Names could have up to six characters

· Post-test counting loop (DO)

· Formatted I/O

· User-defined subprograms

· Three-way selection statement (arithmetic IF)

· No data typing statements

· No separate compilation

· Compiler released in April 1957, after 18 worker-years of effort

· Programs larger than 400 lines rarely compiled correctly, mainly due to poor reliability of 704

· Code was very fast

· Quickly became widely used
· Impact of environment on design
· No need for dynamic storage

· Need good array handling and counting loops

· No string handling, decimal arithmetic, or powerful input/output (commercial stuff)
· Fortran II

· Distributed in 1958

· Independent compilation

· Fixed the bugs

· Fortran IV

· Evolved during 1960-62

· Explicit type declarations

· Logical selection statement

· Subprogram names could be parameters

· ANSI standard in 1966

· Fortran 77

· Became the new standard in 1978

· Character string handling

· Logical loop control statement

· IF-THEN-ELSE statement

· Fortran 90

· Most significant changes from Fortran 77

· Modules

· Dynamic arrays

· Pointers

· Recursion

· CASE statement

· Parameter type checking

· Conclusion

· Highly optimizing compilers (all versions before 90)

· Types and storage of all variables are fixed before run time

· Dramatically changed forever the way computers are used
· LISP

· LIST Processing language
· Designed at MIT by McCarthy

· AI research needed a language to

· Process data in lists (rather than arrays)

· Symbolic computation (rather than numeric)

· Only two data types: atoms and lists

· Syntax is based on lambda calculus
· Pioneered functional programming

· No need for variables or assignment

· Control via recursion and conditional expressions

· Still the dominant language for AI

· COMMON LISP and Scheme are contemporary dialects of LISP

· ML, Miranda, and Haskell are related languages
· ALGOL 60

· ALGOL 60 was the result of efforts to design a universal language

· Modified ALGOL 58 at 6-day meeting in Paris

· New features

· Block structure (local scope)

· Two parameter passing methods

· Subprogram recursion

· Stack-dynamic arrays

· Still no I/O and no string handling

· Successes

· It was the standard way to publish algorithms for over 20 years

· All subsequent imperative languages are based on it

· First machine-independent language

· First language whose syntax was formally defined (BNF)
· Failure

· Never widely used, especially in U.S.

· Reasons

· Lack of I/O and the character set made programs non-portable

· Too flexible--hard to implement

· Entrenchment of Fortran

· Formal syntax description

· Lack of support from IBM
· COBOL

· Design goals

· Must look like simple English

· Must be easy to use, even if that means it will be less powerful

· Must broaden the base of computer users

· Must not be biased by current compiler problems

· First macro facility in a high-level language

· Hierarchical data structures (records)

· Nested selection statements

· Long names (up to 30 characters), with hyphens

· Separate data division
· BASIC

· Design Goals:

· Easy to learn and use for non-science students

· Must be “pleasant and friendly”

· Fast turnaround for homework

· Free and private access

· User time is more important than computer time

· Current popular dialect: Visual BASIC

· First widely used language with time sharing
· PL/I

· PL/I contributions

· First unit-level concurrency

· First exception handling

· Switch-selectable recursion

· First pointer data type

· First array cross sections

· Concerns

· Many new features were poorly designed

· Too large and too complex
· APL and SNOBOL

· Characterized by dynamic typing and dynamic storage allocation

· Variables are untyped

· A variable acquires a type when it is assigned a value

· Storage is allocated to a variable when it is assigned a value
· APL

· Designed as a hardware description language at IBM by Ken Iverson around 1960

· Highly expressive (many operators, for both scalars and arrays of various dimensions)

· Programs are very difficult to read

· Still in use; minimal changes

· SNOBOL

· Designed as a string manipulation language at Bell Labs by Farber, Griswold, and Polensky

· Powerful operators for string pattern matching

· Slower than alternative languages (and thus no longer used for writing editors)

· Stilled used for certain text processing tasks
· SIMULA 67

· Designed primarily for system simulation in Norway by Nygaard and Dahl

· Based on ALGOL 60 and SIMULA I

· Primary Contributions

· Co-routines - a kind of subprogram

· Implemented in a structure called a class

· Classes are the basis for data abstraction

· Classes are structures that include both local data and functionality
· Algol 68

· Design is based on the concept of orthogonality

· Contributions

· User-defined data structures

· Reference types

· Dynamic arrays (called flex arrays)

· Comments

· Less usage than ALGOL 60

· Had strong influence on subsequent languages, especially Pascal, C, and Ada
· Early Algol Descendents

· Pascal

· Developed by Wirth (a member of the ALGOL 68 committee)

· Designed for teaching structured programming

· Small, simple, nothing really new

· Largest impact on teaching programming

· From mid-1970s until the late 1990s, it was the most widely used language for teaching programming
· C

· Designed for systems programming (at Bell Labs by Dennis Richie)

· Evolved primarily from BCLP, B, but also ALGOL 68

· Powerful set of operators, but poor type checking

· Initially spread through UNIX

· Many areas of application
· Prolog

· Developed, by Comerauer and Roussel (University of Aix-Marseille), with help from Kowalski (University of Edinburgh)

· Based on formal logic

· Non-procedural

· Can be summarized as being an intelligent database system that uses an inferencing process to infer the truth of given queries

· Highly inefficient, small application areas
· ADA

· Huge design effort, involving hundreds of people, much money, and about eight years

· Strawman requirements (April 1975)

· Woodman requirements (August 1975)

· Tinman requirements (1976)

· Ironman equipments (1977)

· Steelman requirements (1978)

· Named Ada after Augusta Ada Byron, known as being the first programmer

· Contributions

· Packages - support for data abstraction

· Exception handling - elaborate

· Generic program units

· Concurrency - through the tasking model

· Comments

· Competitive design

· Included all that was then known about software engineering and language design

· First compilers were very difficult; the first really usable compiler came nearly five years after the language design was completed
· Smalltalk

· Developed at Xerox PARC, initially by Alan Kay, later by Adele Goldberg

· First full implementation of an object-oriented language (data abstraction, inheritance, and dynamic type binding)

· Pioneered the graphical user interface design

· Promoted OOP
· C++

· Developed at Bell Labs by Stroustrup in 1980

· Evolved from C and SIMULA 67

· Facilities for object-oriented programming, taken partially from SIMULA 67

· Provides exception handling

· A large and complex language, in part because it supports both procedural and OO programming

· Rapidly grew in popularity, along with OOP

· ANSI standard approved in November 1997

· Microsoft’s version (released with .NET in 2002): Managed C++

· delegates, interfaces, no multiple inheritance
· JAVA

· Developed at Sun in the early 1990s

· C and C++ were not satisfactory for embedded electronic devices

· Based on C++

· Significantly simplified (does not include struct, union, enum, pointer arithmetic, and half of the assignment coercions of C++)

· Supports only OOP

· Has references, but not pointers

· Includes support for applets and a form of concurrency

· Eliminated unsafe features of C++

· Concurrency features

· Libraries for applets, GUIs, database access

· Portable: Java Virtual Machine concept, JIT compilers

· Widely used for WWW pages
· Scripting languages – JavaScript, PHP, Python

· JavaScript

· A joint venture of Netscape and Sun Microsystems

· Used in Web programming (client side) to create dynamic HTML documents

· Related to Java only through similar syntax

· PHP

· PHP: Hypertext Preprocessor

· Used for Web applications (server side); produces HTML code as output

· Python

· An OO interpreted scripting language

· Type checked but dynamically typed

· Supports CGI and form processing
· C#

· Part of the .NET development platform

· Based on C++ , Java, and Delphi

· Provides a language for component-based software development

· All .NET languages (C#, Visual BASIC.NET, Managed C++, J#.NET, and Jscript.NET) use Common Type System (CTS), which provides a common class library

· Likely to become widely used

· Markup languages

· XSLT

· eXtensible Markup Language (XML): a metamarkup language

· eXtensible Stylesheet Language Transformation (XSTL) transforms XML documents for display

· Programming constructs (e.g., looping)

· JSP

· Java Server Pages: a collection of technologies to support dynamic Web documents

· servlet: a Java program that resides on a Web server; servlet’s output is displayed by the browser
