Name : Tomasz Pawel Kurzawa
Abbreviated Review1 – 2:30 class
October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· Machine code

· Assembly language

· FORTRAN was the first high level programming language – IBM – john Backus – team effort

· Pascal was created by Niklaus Wirth named after Blaise Pascal who was a French mathematician of the XVII century - created as a teaching language for computer science students – one person effort
· In the middle to late 1950s, Noam Chomsky and John Backus, in unrelated research efforts, developed the same syntax description formalism, which subsequently became the most widely used method for programming language syntax

· In 1960 Peter Naur, making some modifications to Backus work creates Backus-Naur form, known as BNF.

· reasons why we study programming languages

· To increase our ability to choose appropriate programming language to express our ideas
· To increase our ability to learn new, different programming languages

· To improve our computing abilities

· To better understand the implementation process

· application domains

· Scientific applications

· Applications require a large number of floating point computations

· Good programming language for this kind of applications is FORTRAN

· Business applications

· Applications produce large number of reports, use decimal numbers and characters

· Good programming language for this kind of application is COBOL

· Artificial intelligence

· In this applications symbols are manipulated

· Good programming language for AI applications is LISP

· System programming

· Require efficiency because of continues use

· C is a good programming language for system programming

· Web software

· Eclectic collection of languages:

· Markup languages (e.g., HTML, XML, XHTML)

· Scripting languages(e.g. PHP, CGI)

· General-purpose(e.g., Java, C#)

· language evaluation criteria

· Readability – the ease with which programs can be read and understood
· Simplicity

· Manageable set of features and constructs

· Minimal operator overloading

· Few feature multiplicity

· Orthogonality

· Small set of primitive constructs can be combined in a small number of ways

· Every combination is legal

· Control statements

· The presence of well-known control structures, like while, if, for etc.

· Data types and structures

· Facilities to define new data structures

· Syntax consideration

· Meaningful keywords

· Special words

· Writability – the ease with which language can be used to create programs

· Simplicity and orthogonality

· Few constructs

· Small number of primitives

· Small number of rules

· Support for abstraction

· Ability to define and is complex structures

· Expressivity

· Convenient ways of specifying operations

· Reliability – performs accordingly to its specification
· Type checking

· Program testing for possible type errors

· Exception handling

· In case of errors correct way of handling them

· Aliasing

· At least two ways to reference the same memory location

· Cost – the ultimate total cost of using programming language

· Training

· Writing programs
· Compiling

· Executing

· Availability of free compilers

· Poor reliability leads to high costs

· Maintaining

· Portability

· Ease with which program can be moved from one implementation to other

· Generality

· Applicability to wide range of applications

· Well – definedeness

· Precision and completeness of language definition

· robust

· powerful

· language translation methods

· Compilation

· High-level programs (source language) are translated into machine code (machine language)
· Slow translation

· Fast execution

· Compilation has four main phases:

· Lexical analysis : characters are translates into lexical units

· Syntax analysis: creation of the parse tree using lexical units

· Semantics analysis: generation of intermediate code

· Code generation: machine code is being generated

· Pure Interpretation

· No translation

· Easier implementation of programs

· Slower execution

· Require more space

· More and more rare on high-level languages

· Programs are interpreters by another program known as an interpreter

· Hybrid Implementation System

· A compromise between compilers and pure interpreters

· High-level language program is translated to an intermediate language that allows easy interpretation

· Fast, pure interpretation

· Just-in-time

· Initially translate programs to an intermediate language

· Compile intermediate language into machine language

· Machine language (code) is kept for subsequent calls

· language paradigms
· Imperative
· Variables, assignment statements, iterations are the main features

· Example languages: C++, Pascal

· Functional

· Computations are performed by applying functions to given parameters

· Example languages: LISP, Scheme

· Logic

· Rule-based programming

· Example languages: Prolog

· Object – oriented

· Data abstraction, inheritance, late binding

· Examples: Java, C++

· Markup

· Not a programming languages by itself, used to specify layout of information in Web documents

· Examples: XHTML, XML, HTML

· basic statements

· output

· input

· assignment

· iteration

· selection

· ways of describing languages

· Grammars are commonly used to describe the syntax of programming language

· Tokens of programming languages can be described by regular grammars

· Whole programming language can be described using context-free grammar

· BNF, Backus-Naur form, used to describe syntax

· Metalanguage is a language that is used to describe another language

· BNF is a metalanguage for programming languages

· The abstractions in a BNF are called non-terminal symbols, or simply nonterminals, and the lexemes and tokens of the rules are called terminal symbols, or simply terminals.

· BNF is simply collection of rules

· Sentence generation is called a derivation

· Derivation starts from start symbol

· Derivation where the replacement is always done on the left most nonterminal is called leftmost derivation

· If it is right, it is called rightmost derivation

· The hierarchical syntactic structure of the sentences of the language is called parse tree
· Grammar that generates a sentential form for which there are two or more distinct parse trees is said to be ambiguous

· special words

· Reserved words are part of the programming language, and cannot be redefined

· They cannot be used as variable names

· In Pascal for example to special reserved words belongs: and, array, begin, case, record, type, set, function, etc.

· In Fortran there are no reserved words

· data types

· simple types
· real

· double precision character

· ordinal

· enumerated

· char

· integer

· Boolean
· Structured types

· String

· Array

· Complex

· Record

· File

· Set

· built-in functions

· A function that is available through a simple reference and specification of arguments in a given higher-level programming language. Also known as built-in procedure

· In Pascal for example : abs(x), sqrt(x), sin(x), eof(f), etc.

· In Fortran for example: sin(x), cos(x),tan(x), log(x), etc.

· subprogram types

· Each subprogram has a single entry point

· The calling program unit is suspended during the execution of the called subprogram, which implies that there is only one subprogram in execution at any given time
· Control always return to the caller when the subprogram execution terminates

· PASCAL:

· Procedures

· It has the same basic form as program

· There is a semicolon (not a period) at the end.

· To call the procedure from the main program, just use the name,

· Functions

· Functions work the same way as procedures, but they always return a single value to the main program through its own name

· FORTRAN:

· Statement functions :

· have the general form: name (a1, a2 an) = F(a1, a2 an)
· parenthesized variables on the left side represent the arguments to the function

· The entire right side is an expression which specifies the value of the function

· Functions :

· FORTRAN functions return a single value and return it by assigning the value to the function name (inside the function)

· Recursion not available in early FORTRAN

· Function names, by default, indicate the type of the return value.

· To call a function you simply write the function name followed by its actual parameters in parentheses
· The returned value ‘replaces’ the call and you should store the returned value somewhere

· Subroutine skeleton: FUNCTION SUM (X,Y,Z)

…

RETURN

END

· Subroutines :
· Types of values that subprogram expects to receive are real
· When passing different type add a line directly following the subroutine declaration which declares them

· Subroutine skeleton : SUBROUTINE SORXYZ (X, Y, Z)

 ...

 RETURN

 END

· parameter passing modes

· Pass-by-value – the value of the actual parameter is used to initialize the corresponding formal parameter, which acts as a local variable in the subprogram

· Pass-by-reference – method transmits an access path, usually just an address, to the called subprogram

· Pass-by-name – the actual parameter is substituted for the corresponding formal parameter in all its occurrences in the subprogram.

· Languages
· FORTRAN

· Variables of type REAL do not have to be defined if their names begin with letters A-H, or O-Z because they are by default real

· If name of variable starts with letter I-N and its going to be REAL variable it should be defined

· DIMENSION indicates that the variable name which follow are arrays

· The number in parenthesis after the name of array indicates the size of the array

· = is the assignment operator

· READ is the input statement

· 5 in READ(5,...) is the default input device

· The numbers after 5, in READ statement are the labels for the related FORMAT statement

· WRITE is the output statement

· 6 in WRITE(6,...) is the default output device

· The numbers after 6, in WRITE statement are the labels for the related FORMAT statement

· All write statements should have 1X as the first statement in the format list eg. FORMAT (1X,...) which means 1 blank space.

· Real number to be input or output is indicated by the F format.

· Number before F indicates how many numbers is expected.

· In the FORMAT statement first number after F indicates the 10 width of variable, 2nd indicates number of places after the decimal point

· The '/' in FORMAT statements indicates in case of READ that the rest of line should not be read, while in case of WRITE indicates empty line.

· FUNCTION should have type of returned value. Returned value is represented by the name of function.

· Because parameters are passed by reference, array passed as parameter should be redefine inside function or subroutine

· Loop statement has form DO label varName = startValue, endValue, modificationValue

· MOD(x,y) is a build in function , returns remainder x - INT(x/y)*y

· Arithmetic IF statement is IF (e) s1, s2, s3 where e is an integer, real, or double precision expression

· s1, s2, and s3 are each the statement label of an executable statement that appears in the same program unit as the arithmetic IF statement

· Variables of type REAL do not have to be defined if their names begin with letters A-H, or O-Z because they are by default real

· If name of variable starts with letter I-N and its going to be REAL variable it should be defined

· DIMENSION indicates that the variable name which follow are arrays

· The number in parenthesis after the name of array indicates the size of the array

· Conditional statement IF(Boolean condition) THEN ... ENDIF

· The RETURN statement returns from function or subroutine, is executable statement

· The STOP statement ends the execution of the program

· The END statement marks the end of a compilation unit

· ALICE

· Alice is an object-based but not full-fledged OOP language because it lacks inheritance, encapsulations, and polymorphism.

· PASCAL

· Program has structure PROGRAMBEGIN..... END.

· The period following END at the ed of the program is required

· Pascal has reserved words, that can not be used as identifires

· Program header statment should contain default device names if program is going to read from keyboard and / or write on screen

· Pascal program header statment begin with the reserved word PROGRAM

· := is the assignment operator in Pascal

· ; /semi-colon/ is a statment seperator in Pascal

· Input statment has 3 forms

· read(x); gets input from default input device

· read(input, x); gets input from default input device

· readln(x); gets input from default input device and goes to next line of input

· Similarly output statment has 3 forms

· write (x); prints the value on default output device

· write (output, x); prints the value on default output device

· writeln(x); prints the value on default output device and then goes to new line of output

· Reading from file can be done by: read(file_variable, argument_list)

· Writing to the file can be done by: write(file_variable, argument_list)

· File variable is declared as data type text indicating the file is plain text

· Before working with file , file should be assiociated with variable,

· To open file for reading first you have to assign filename to variable and then open file to read:

· assign (file_variable, 'filepath\filename');

· reset (file_variable);

· To open file for writing, first you have to assign filename to variable and then open file for writing:

· assign(file_variable, 'filepath\filename')

· rewrite(file_variable);

· After finishing work with file, file should be closed : close(file_identifier)

· The declaration of a record begins with the keyword record, and ends with the keyword end;

· Record type should be assign to a variable

· Each of the individual fields of a record are accessed by using the format,

· recordname.fieldname := value or variable;

· type array_name = ARRAY [lower..upper] of data_type;

· var myarray : array_name;

· An array can be defined as a type, then a working variable

· IF statment has three different formats:

· if (condition) then statment; | if(condition)then statment1 else statment2;

· | if (condition) then begin statment1;statment2; end;

· String comparison is done using arithmetic operators eg. abc < acb will return true

· Test if I/O error occured while opening file can be done using: IOResult<>0

· Compiler directive - disable the I/O error check : {$I-}

· Compiler directive - enable the I/O error check : {$I+}

· WHILE loop general form: while BooleanExpression do statment ;

· To declare a record, you'd use:

· TYPE TypeName = record

· identifierlist1 : datatype1;

· ...

· identifierlistn : datatypen;

· end;

· A record allows you to keep related data items in one structure,

· FOR loop general form: for index := StartLowVal to EndHighVal do statement;

· To access record variable use a period between your record variable and its field (not a comma)

· Use single quotes around your prompts and labels (not double quotes)
