Dan Gritsko

Abbreviated Review

October 4, 2007

What have we discussed about languages so far this semester?

· Some historical information

1. Goto statements considered harmful and made languages hard to understand was a letter that was written to the Communications of the ACM that generated a lot of controversy.

2. Programming began with machine language, then moved to assembly language. The first high-level language was FORTRAN, created by a team at IBM led by Niklaus Wirth. Their goal was to create a compiler that would generate assembly language code that was on par with code that would be written by an experienced programmer. FORTRAN was intended to perform mathematical functions.

3. Another high-level language was Pascal, created by Niklaus Wirth as a teaching language. The language is named after the mathematician Blaise Pascal. Early Pascal compilers translated source to P-code.

· Reasons why we study programming languages

1. By studying programming languages, we are able to express our ideas without being restricted to one specific language.

2. By studying programming languages, we have better preparation for choosing a language to complete a given task. 

3. By studying programming languages, we make it easier on ourselves to learn more new languages.

4. By studying programming languages, we are able to better understand the significance of details in the implementation of certain features in a language.

· Application domains

1. Scientific applications – programs are used for large numbers of computations

2. Business applications – programs are used to produce reports

3. Artificial intelligence applications – programs are used to manipulate symbols rather than numbers

4. Systems programming applications – programs are used continuously

5. Web software applications – group of varied languages of various types including markup, scripting, and general purpose

· Language evaluation criteria

1. Readability – how easy is it for someone to read and understand a given piece of code written in the language?

2. Writablity – how easy is it for a programmer to write something in the language?

3. Reliability – how does the performance of programs written in the language compare to the specifications of the language?

4. Cost – how much is the total cost of using the language (training developers, writing code, maintaining code, etc)?

· Language translation methods

1. Compilation – High-level code (which is easily written and read by humans) is translated into machine code. Once compiled, code executes very quickly; however the compilation process is slow by comparison.

2. Pure interpretation – High-level code is executed directly by an interpreter (no translation). This means that interpreted programs take longer to execute than compiled programs, however pure interpretation is easier to implement (run-time errors are immediately displayed).

3. Hybrid – A combination between compilation and pure interpretation. Code is translated to an intermediate language allowing for easy interpretation. This method is faster than pure interpretation but not as fast as compilation.

· Langauge paradigms

1. Object-Oriented

2. Procedural

3. Functional

4. Markup

5. Event-Based

· Basic statements

1. Assignment: “=” in FORTRAN, “:=” in Pascal

2. GOTO – Used to directly change the flow of the program by jumping to a specific location within the program and continuing execution from there. Use of the GOTO statement is generally considered harmful, as it tends to lead to “spaghetti code” (source code that is unclear and difficult to understand).

3. IF-THEN – Used to check whether a Boolean condition is true or false, and execute code (or not) based on the outcome. Sometimes used in conjunction with an “ELSE” or “ELSE-IF” statement to execute other blocks of code or check for other conditions.

4. WHILE-LOOP – Used to check a Boolean value, then execute a block of code if that value was true. Execution of the block repeats until the condition is false. 

5. DO-LOOP – Used to execute a block of code once, then check a Boolean value. If the value is true, repeat the execution of the block and repeat until the value is false. A DO-LOOP is very similar to a WHILE-LOOP, except that in a DO-LOOP the code block is guaranteed to execute at least once.

6. FOR-LOOP – Used to execute a block of code a specified number of times. Also known as a counted loop or iterated loop. Different from a WHILE-LOOP or DO-LOOP because the user knows at the beginning of the loop the number of times the loop will execute.

· Ways of describing languages

1. Backus-Naur Form (BNF) – BNF is a widely used metalanguage used to describe other languages. BNF consists of terminals, nonterminals, and a set of rules. In BNF, a language’s syntax structure is represented through abstract expressions.

2. Context-Free Grammar – Context-free grammars were developed in the 1950s by Noam Chomsky. They define a class of languages known as context-free languages.

· Special words

1. Languages must have a group of words that represent things to the compiler. These are often known as “reserved words” because they are “reserved” by the language and cannot be used as identifiers. However, this is not always the case.

2. FORTRAN does not have reserved words. It does have “special” words that mean specific things within the language syntax, however they are not reserved. This means that identifiers such as IF, WHILE, and DO are valid.

3. Pascal does have reserved words, thereby restricting identifier names to names that are not a part of the list of reserved words.

· Data types

1. Integer data types store whole-number values. Most programming languages typically truncate any decimal places that may be present after a mathematical operation performed with integers (such as division.

2. Real data types store floating-point values. They typically have a greater range than integers (i.e., they can store numbers that are much smaller or much larger than integers can)

3. Boolean data types store one of two values – either “true” or “false”. 

4. Char data types are used to store a single character. This could be any character, be it alphanumeric or a symbol. 

5. String data types store groups of characters representing text, such as the phrase “hello world”. Some programming languages implement the string data type simply by using an array of characters

6. Arrays are actually a data structure that can be defined for any data type. An array is simply an ordered group of a certain data type under a common name. Individual elements in the array are accessed by using the name of the array and an “index” – an integer value that specifies their relative location within the array.

7. Many more data types than these few exist (depending on the language being used), however these are the main data types that we have dealt with in class.

· Built-in functions

1. Languages feature built-in functions that help the programmer perform basic operations, such as input from the keyboard (or a file) and output to the screen (or a file).

2. Languages often feature many more functions to perform different operations. For example, FORTRAN contains lots of functions dealing with mathematical operations such as SQRT, EXP, MOD, SIN, COS, TAN, etc. The documentation for a language should specify the built-in functions that are available to a programmer.

· Subprogram types

1. Functions - Return a single value using the “return” statement.

2. Procedures – Return either multiple values or none at all. Multiple values are returned through the parameter list (pass-by-reference; see below)

· Parameter passing modes

1. Pass-by-reference – When a parameter is passed by reference, the actual memory location of the variable is passed. This means that changes made to the parameter will be reflected in the corresponding location in memory.

2. Pass-by-value – When a parameter is passed by value, only the value located at the memory location of the variable is passed (and not the actual address).

· Languages

1. FORTRAN was the first high-level language. It was created by a team at IBM led by Niklaus Wirth. Their goal was to create a compiler that would take FORTRAN code (code that was fairly easy for a programmer to read and write) and use it to generate efficient assembly code that was on par with code written by an experienced programmer. FORTRAN was intended for use in mathematical and scientific use.

2. Mini-language Core was a small language that we used to practice reading BNF and using this information to write a short program.

3. Alice is an object-oriented and event-driven programming language which uses an IDE with a GUI in order to create 3D animations. All programs are created using the IDE. Alice was designed to teach beginner students how to program, and therefore is not cluttered by the capabilities of a language like Java or C++ (which would be too confusing for a fledgling programmer).

4. Pascal is a programming language that was developed by Niklaus Wirth. It was originally intended to be a teaching language. 

