Becca Gaspard

CS-430
Becca Gaspard

CS-430

Abbreviated Review One

What have we discussed about languages so far this semester?

Some historical information:

· machine code
· Assembly language
· FORTRAN was the first high level programming language, IBM, John Backus -team effort
· Pascal was created by Niklaus Wirth named after Blaise Pascal who was a French mathematician of the 17th century - created as a teaching language for computer science students - one person effort
Reasons why we study programming languages:

· increased capacity to express ideas
· improved background for choosing appropriate languages
· increased ability to learn new languages
· better understanding of significance of implementation
· overall advancement of computing
Application domains:

· scientific - require large number of floating-point computations (ex FORTRAN)
· business - producing reports, precise ways of describing and storing numbers, ability to specify decimal arithmetic operations (ex COBOL)
· artificial intelligence - symbolic computation, requires more flexibility (ex LISP)
· systems programming - operating systems and support tools, used almost continuously, must be efficient, fast execution (ex PL/I, C)
· web software - markup languages (ex XHTML), programming languages (ex Java), need for dynamic web content, scripting languages (ex PHP, JS)
Language evaluation criteria:

· readability
· simplicity
· orthogonality - small set of constructs can be combined in many useful ways
· control statements - reading from top to bottom is a lot easier than skipping around with GOTO’s
· data types and structures - ex. boolean values are easier to understand than using integers to represent booleans
· syntax - good identifiers, special words
· writability
· support for abstraction - ability to define and use complex structures while allowing some of the details to be ignored
· expressivity - convenient ways of expressing computations
· reliability
· type checking
· exception handling - intercept run-time errors and continue
· aliasing - 2+ distinct referencing methods for the same memory cell (ex 2 pointers set to same variable)
· robust
· powerful
· cost
· training programmers, money spent writing programs
· cost of compiling and running programs, implementation systems
· cost of poor reliability and maintenance
Language translation methods:

· Backus-Naur (Context-Free) Grammar
· yellow handout
· replace non-terminals until you get a terminal
· ex <declaration-sequence> ::== <declaration> | <declaration><declaration-sequence>
parse trees and leftmost derivations can help us use grammars to write a program

Language paradigms:

· object-oriented - data abstraction, inheritance, enhances reuse of software, increases development productivity
· imperative - algorithms specified in great detail, specific order of execution
· visual languages - ex Visual BASIC, drag-and-drop generation of code
· functional - primary means of computation is applying functions to given parameters
· logic - rule-based, rules not specified in order, implementation system must chose execution order that produces desired result
· markup-languages - not programming languages, specify layouts, can have some programming capabilities (ex JSTL)
Basic statements:
· output
· input
· assignment
· iteration
· selection
Ways of describing languages:

· syntax = form of expressions, statements, and program units
· semantics = meaning of the expressions, statements, and program units
· grammars
· terminals, non-terminals, productions, start symbol
· BNF
· does not specify implementation details, operating systems, other details
Special words:

· FORTRAN (most common)
· FORMAT, CONTINUE, DATA, STOP, IF, GO TO, READ, WRITE, DO, WHILE, RETURN, END, SUBROUTINE
· Pascal (most common)
· and, array, begin, continue, div, downto, else, end, file, for, function, goto, if, nil, or, program, record, repeat, set, then, until, var, while
Data types:

· simple types
· integer
· real (double precision)
· character
· Boolean
· Structured types
· String
· Array
· Complex
record

Built-in functions:

· FORTRAN (most common)
· MOD, ABS, MAX, LOG, RAND(), MIN, EXP, LEN
· Pascal (most common)
abs, eof, eoln, round, sqrt, exp, trunc, cos, ln

Subprogram types:

· FORTRAN
· statement functions, subroutines, functions
· functions return a single value by assignment to function name
· subroutines return 0+ values through the parameter list
· parameters are passed by reference
· Pascal
· procedures
functions

Parameter passing modes:

· Pascal
· var parameters - pass by address (reference)
· value parameters, - copy a value in
· FORTRAN
parameters are passed by reference

Languages:
· FORTRAN
· Pascal
· Alice
· object-oriented, educational language with associated development environment
· developed by researchers at Carnegie-Mellon
· drag and drop environment to create computer animations using 3D models

