Mike Garrett

CS 430

12:30 class

Professor Adams

Abbreviated Review

October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· Pascal language is named after mathematician Pascal by Niklaus Wirth created as a teaching language. Early compilers translated it to P-code

· FORTRAN was intended to perform mathematical functions created by a team led by John Backus at IBM

· GoTO statements considered harmful and made languages hard to understand was a letter that was written to the Communications of the ACM that generated a lot of controversy

· reasons why we study programming languages

· We study programming languages to understand the theory behind why new programming languages are created. In a nut shell, programming languages are designed and implemented based on the current needs and standards of the computing world. We study these theories, and the design of past languages so we can improve them as we progress into the future.

· application domains

· application domains are in a sense the “reason” programming languages are created. When we have a problem and need a method to solve it, a new languge is designed. The following are some domains:

· Scientific and Mathematical Applications.
· Programming languages like Fortran were created to solve these problems. Fortran was created to help solve large scale floating-point arithmetic computations.

· Business Applications

· As computing became popular in the business atmosphere, new problems arose that previous languages could not handle efficiently. A language called COBOL was created to suit the needs of the new domain. COBOL was created to facilitate the production of elaborate reports, the precice description and storing of floating points and character data, and ability to specify decimal arithmetic operations.

· Artificial Intelligence

· As we progressed further, and our theories of computing improved the idea of AI came into play. These concepts dealed with more symbolic representation rather than numeric. Languages like LISP were developed to suit these needs. LISP is a functional language. Later languages like the logic based Prolog language were created to aid in the implementation of AI Systems. Procedural languages like C have also been of some use to AI applications as well.
· Systems Programming

· Operating Systems and programming support tools for a computer system are required to be most efficient since these are used continuously. Languages were needed to provide the fast execution of this code. Languages like PL/S and C were used for this domain.

· Web Software

· As the use of the internet continues to grow, the means to produce web application grows as well. Markup languages like HTML or XHTML were created (not exactly programming languages), along with general purpose languages such as Java. As web development continued to grow, the demand for functionality in web content grew. Markup languages could not provide this, so scripting languages like PHP and JavaScript were created to allow for this.

· language evaluation criteria

· When developing programming languages, there are criteria that must be followed to allow evaluation on how the language impacts the software development process.

· Readability and Writability – can the language be understood and used with ease.
· Overall Simplicity – how easy is it to learn the language?

· Orthogonality – how complex is the base of the program? Are the primitive constructs simple enough so that the control and structure of the language is easily understood and used? Or is it easy to misuse these do to unfamiliarity?
· Control Statements – are the control statements designed in a way that the use of them is easy to understand

· Example: The use of GOTO statements in FORTRAN contributes to the poor readability of the programs at time.

· Data Types and Structures – is the meaning of these clear to the user?

· Example: languages without Boolean data types often used numerical representation (1 or 0). This is sometimes unclear as to what the number means as opposed to languages with them where you can assign the values true and false.

· Syntax – does the syntax make sense? How do we design the syntax to make it resemble modern language (ie: English) to facilitate readability.

· Abstraction – how clear is the concept of Abstraction in the language?

· Expressivity – what functionality is readily available to the user? And how easy is it to understand and use this?

· Reliability – does the language perform to its specifications under all conditions?

· Type Checking – do we use run-time or compile-time type checking? Compile time is most desirable, but at times it is not available? Compile time checking removes this problem.

· Exception Handling – how does the language deal with run-time errors? What measures does the language take to intercept these and correct them so that execution is not halted.

· Aliasing – having two or more distinct methods for referencing the same memory

· Example: two pointers set on same variable

· Readability and Writability – not reliable if can’t be understood/used

· Cost – monetary and abstract concepts

· Cost for training. Cost for writing programs (environments)

· Cost for compiling (time). Cost for execution (time, efficiency, resources)

· language translation methods (don’t understand the question)
· Compilation – convert source code of one language into code of another
· Grammars

· Lexical analyzers

· Syntax analyzers

· Parse trees

· Interpretation – simulates the code to produce results (no translation)

· Hybrid Implementation Systems – translates high-level source code into intermediate code to facilitate easier interpretation.

· Preprocessors – process before compilation.

· Examples are C include statements. Or replacing variables with values stored in name table (like constants)

· language paradigms

· object-oriented

· procedural

· functional

· logic
· visual

· event-based ? (why is this one?)
· basic statements
· not fully understanding question I think

· control statements

· assignment statements

· declaration statements

· conditional statements

· ways of describing languages – don’t understand question
· special words

· reserved words – defined by language (grammar)

· example: int, double, float, for, if, while

· data types

· integer, double, float,

· built-in functions

· functions built into the language to give the language functionality

· operators

· subprogram types

· functions return A single value

· one which returns multiple values or none at all – returns values through the parameter list

· parameter passing modes

· pass by value
· pass by reference

· Languages

· Fortran (I, II, IV, 77, 90, 95)

· Prolog

· ALGOL (58, 60, 68, W)

· PL/I

· FLOW-MATIC

· COBOL

· BASIC

· APL

· SIMULA (I, 67)

· Pascal

· ML

· MODULA(2,3)

· Oberon

· Python

· Ada(83, 95)

· Eiffel

· Smalltalk 80

· Perl

· PHP

· JavaScript

· QuickBASIC

· Visual BASIC

· Visual Basic.NET

· CPL

· BCPL

· B

· C, ANSI C

· C++

· Java

· C#

· Python

· LISP

· Scheme

· COMMON LISP

· Miranda

· Haskell

· SNOBOL

· ICON

· Awk

(is this enough? Haha)

