Name___Chase Ganey______
Course: CS430 Fall

Date: 10/3/07

Section: 12:30pm Section

Abbreviated Review

October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

General language history:

· GOTO statements considered harmful and made languages hard to understand was a letter that was written to the Communications of the ACM that generated a lot of controversy.

· What was wrong with using machine code?

· Poor readability

· Poor modifiability

· Expression coding was tedious

· Mechine deficiencies – no indexing or floating point

· Pseudocodes: Short code

· Short code was developed by Mauchly in 1949 for BINAC computers

· Expressions were coded, left to right

· Pseudocodes: Speedcoding

· Speedcoding developed by Backus in 1954 for IBM 701

· Pseudo ops for arithmetic and math functions

· Conditional and unconditional branching

· Auto-increment registers for array access

· Slow!

· Only 700 words left for user program

· Pseudocodes: Related Systems

· The UNIVAC compiling System

· Developed by a team led by Grace Hopper

· Pseudocode expanded into machine code

· David J. Wheeler (Cambridge University)

· Developed a method of using blocks of relocatable addresses to solve the problem of absolute addressing

· IBM 704 and FORTRAN

· FORTRAN 0: 1954 – not implemented

· FORTRAN 1: 1957

· Designed for the new IBM 704, which had index registers and floating point hardware

· Environment of development

· Computers were small and unreliable

· Applications were scientific

· No programming methodology or tools

· Machine efficiency was most important

Pascal history:

· Pascal language is named after mathematician Pascal by Niklaus Wirth created as a teaching language.

· Wirth developed Pascal to provide features that were lacking in other languages of the time.

· His principle objectives for Pascal were for the language to be efficient to implement and run, allow for the development of well structured and well organized programs, and to serve as a vehicle for the teaching of the important concepts of computer programming.

· Pascal was named after Blaise Pascal who was a French mathematician of the 17th century. Early compilers translated it to P-code

FORTRAN history:

· One of the oldest programming languages, FORTRAN was intended to perform mathematical functions created by a team led by John Backus at IBM, and was first published in 1957.
· The name FORTRAN is an acronym for FORmula TRANslation, because it was designed to allow easy translation of math formulas into code.

· Often referred to as a scientific language, FORTRAN was the first high-level language, using the first compiler ever developed.

· Prior to the development of FORTRAN computer programmers were required to program in machine/assembly code, which was an extremely difficult and time consuming task, not to mention the dreadful chore of debugging the code.
· The goal of FORTRAN was to design a language and write a compiler for it that would create assembly language code that was as good as teams designing assembly language.
· Punch cards used to hold FORTRAN code were originally designed by Herman Hollerith and used in the 1880 census

· ANSI stands for American National Standards Institute

· ISO stands for International Standard Organization

· reasons why we study programming languages

· increased capacity to express ideas

· the study of programming language concepts builds an appreciation for valuable language features and encourages programmers to use them

· improved background for choosing appropriate language

· Most programmers tend to stick one or two familiar languages for projects. When in reality, an older language might be suited better for a certain project

· Increased ability to learn new languages

· It’s important to get a thorough understanding of the fundamental concepts because it makes learning new languages far easier to seeing how these concepts are incorporated into the design of the language being learned

· Better understanding of the significance of implementation

· An understanding of implementation issues leads to an understanding of why languages are designed the way they are. This knowledge in turn leads to the ability to use a language more intelligently, as it was designed to be used.

· We can become better programmers by understanding the choices among programming language constructs and the consequences of those choices.

· Overall advancement of computing

· Most popular languages are not always the best available. This is partly due to the fact that computer users can be unaware of the benefits of the language

· If those who choose languages were better informed, perhaps better languages would eventually squeeze out poorer ones.

· application domains

· Scientific applications
· The first language for scientific applications was FORTRAN

· Typically, scientific applications have simple data structures but require large numbers of floating-point arithmetic computations

· Business applications

· Use of computers for business applications begain in the 1950s

· First successful high-level language for business was COBOL

· Artifical intelligence

· The first widely used programming language developed for AI applications was the functional language LISP which appeared in 1959.

· AI is a broad area of computer applications characterized by the use of symbolic rather than numeric computations.

· Symbolic computation means that symbols, consisting of names rather than numbers, are manipulated

· Systems programming

· The operating system and all of the programming support tools of a computer system are collectively known as its system software.

· A language for this domain must provide fast execution. Furthermore, it must have low-level features that allow the software interfaces to external devices to be written

· The UNIX operating system is written almost entirely in C

· Web software

· The WWW is supported by an eclectic collection of languages, ranging from markup languages, such as XHTML, which is not a programming language, to general-purpose programming languages, such as Java.

· language evaluation criteria

· simplicity/orthogonality
· Overall simplicity of a programming language strongly affects its readability
· Orthogonality in a programming language means that a relatively small set of primitive constructs can be combined in a relatively small number of ways to build the control and data structures of the language.
· powerful

· Support for abstraction means the ability to define and then use complicated structures or operations in ways that allow many of the details to be ignored.

· cost

· The ultimate cost of a programming language is a function of many of its characteristics

· Cost of training programmers to use the language, which is a function of the simplicity and orthogonality of the language and the experience of the programmers

· Cost of writing programs in the language. This is a function of the writability of the language

· Cost of compiling programs in the language.

· Cost of executing programs written in a language is greatly influenced by that language’s design

· Cost of a language the language implementation system

· Cost of poor reliability

· Cost of maintaining programs, which includes both corrections and modifications to add new capabilities.

· Of all the contributors to language costs, three are most important: program development, maintenance, and reliability

· Reliability/robust
· type checking – testing for type errors in a given program, either by the compiler or during program execution

· Exception handling – ability of a program to intercept run-time errors (as well as other unusual conditions detected by the program), take corrective measures, and then continue is an obvious aid to reliability

· Aliasing – having two or more distinct referencing methods, or names, for the same memory cell.

· Some languages use aliasing to overcome deficiencies in the language’s data abstraction facilities

· Other languages greatly restrict aliasing to increase their reliability

· readability and writability – Both readability and writability influence reliability.

· The easier a program is to write, the more likely it is to be correct.

· Readability affects reliability in both the writing and maintenance phases of the life cycle. Programs that are difficult to read are difficult both to write and to modify.

· Generality – the applicability to a wide range of applications

· Well-definedness – the completeness and precision of the languages official defining document

· language translation methods

· Compilation

· In general, programs that are compiled execute faster because they do not have to be re-translated to machine language every time they are run

· Interpretation

· Programs that are interpreted are translated to machine language every time they are run.

· Hybrid translation

· Java is an example of a hybrid language. Its source code is compiled to byte code and then the byte code is interpreted when the program is executed.

· Three steps computer carries out for each instruction it processes:

· Fetches the instruction

· Decodes the instruction

· Executes the instruction

· language paradigms

· object-oriented – A language in which data and the functions which access it are treated as a unit. Concept of classes, with instantiations of differences.
· procedural/imperative – A language which states how to compute the result of a given problem. Statement oriented, which variables holding values. (example: FORTRAN)
· functional – In the narrow sense, a functional language is one that operates by the use of higher-order functions, building operators that manipulate functions directly without ever appearing to manipulate data.
· event-driven – the flow of the program is determined by user actions (mouse clicks, key presses) or messages from other programs. (Example: Visual Basic)
· assembly – A symbolic representation of the machine language of a specific computer

· Metalanguage – A language used for formal description of another language. (Example: mini-language core)
· basic statements

· 5 Basic Statements that every programming language MUST have:

· output

· input

· assignment

· iteration (loop statement)
· selection (if statement)
· ways of describing languages

· Formal methods of Describing Syntax

· Backus-Naur Form and Context-Free Grammers

· Most widely known method for describing programming language syntax

· Extended BNF

· Improves readability and writability of BNF

· Grammers and Recognizers

· Context-Free Grammars

· Developed by Noam Chomsky in the mid-1950s

· Language generators, meant to describe the syntax of natural languages

· Define a class of languages called context-free languages

· Backus-Naur Form (1959)

· Invented by John Backus to describe Algol 58

· BNF is equivalent to context-free grammars

· BNF is a metalanguage used to describe another language

· In BNF, abstractions are used to representclasses of syntactic structures-they act like syntactic variables (also called nonterminal symbols)

· special words

· reserved words – identifiers can not use reserved words
· Pascal

· AND, CONST, ELSE, FORWARD, IF, DO, NOT … etc.

· FORTRAN

· Has no reserved words, only keywords.
· Keywords

· Pascal – Pascal is case insensitive. pascal compiler ignores the case of letters in identifiers and keywords, but distinguishes them in strings. Thus the pascal identifiers MyId, MYID and myid are identical but the strings ‘MyString’, ‘MYSTRING’ and ‘mystring’ are different.

· In Pascal, keywords have the form of identifiers in the input text.

· Examples: while, do, begin, end, if, not, and, etc.

· FORTRAN

· DATA, END, OPEN, CALL, CHARACTER, CONTINUE etc.

· FORTRAN is case-sensitive. As a naming convention, all identifiers are lowercase while keywords are uppercase.

· data types

· simple types

· integer

· real

· double precision character

· float

· Boolean

· Structured types

· String

· Array

· Complex

· Record

· Abstract

· Linked list

· built-in functions
· FORTRAN

· Pascal

· subprogram types

· functions return A single value. Values are passed in by value in FORTRAN and either value or reference in Pascal.
· Subroutine

· Used in FORTRAN. Parameters are passed in by reference.

· Procedures

· one which returns multiple values or none at all – returns values through the parameter list

· parameter passing modes

· Pass by reference or Pass by value

· In FORTRAN and Pascal you have the choice of using pass by value or pass by reference

· In FORTRAN, SUBROUTINE uses pass by reference. FUNCTION uses pass by value.

· In Pascal, you can use either pass by reference or pass by value using PROCEDURE or FUNCTION.
· Languages

· FORTRAN

· Significant language features

· Simple to learn – when FORTRAN was designed, one of the objectives was to write a language that was easy to learn and understand

· Machine Independent – allows for easy transportation of a program from one machine to another

· More natural ways to express mathematical functions – FORTRAN permits even severely complex mathematical functions to be expressed similarly to regular algebraic notation

· Problem orientated language

· Remains close to and exploits the available hardware

· Efficient execution – there is only an approximate 20% decrease in efficiency as compared to assembly/machine code

· Ability to control storage allocation – programmers were able to easily control the allocation of storage (although this is considered to be a dangerous practice today, it was quite important some time ago due to limited memory).

· More freedom in code layout – unlike assembly/machine language, code does not need to be laid out in rigidly defined columns, (though it still must remain within the parameters of the FORTRAN source code form).

· FORTRAN Syntax

· A FORTRAN FUNCTION returns only 1 value and should always return a value and it does it by assignment to the FUNCTION name

· A FORTRAN SUBROUTINE may return 0, 1, or many values and the values are returned through the parameter list.

· Early FORTRAN did not have recursive capabilities.

· Array data is stored linearly in column-major order.
· Mini-language Core

· Developed by Ledgard and Marcotty

· A metalanguage is a language used to describe a language

· BNF is an example of a context-free grammer
· Elements of a grammer:

· Set of non-terminals

· Set of terminals

· Set of productions (or rules)

· Start (or goal symbol)

· Alice

· A free open source object-based educational programming language with an associated development environment.

· Uses a drag and drop environment to create computer animations using 3d models.

· Its sole purpose is to teach programming. It’s designed to appeal to specific subpopulations not normally exposed to computer programming, such as middle school girls, by encouraging storytelling through a simple drag-and-drop interface.

· An object-based but not full-fledged OOP language because it lacks inheritance, encapsulations, and polymorphism

· Concurrency in Alice is built in

· No syntax errors since Alice environment dictates what you can do

· Pascal

· Significant language features

· Built in data types – Pascal contains it’s own built in data types of Integer, Real, Character, and Boolean

· User defined Data Types – Has the ability to define scalar types as well as subranges of those data types

· Provides a defined set of Data Structures – These data structures include Arrays, Records, Files and Sets.

· Has a strong data typing element – Pascal compilers can diagnose an incompatible assignment of one type to a variable to another type
· Supports Structured Programming – This is accomplished through the use of subprograms called procedures and functions

· Simplicity and Expressivity – Because the language is simple and expressive in nature it allows for effective teaching of computer programming techniques
