Abbreviated Review

October 2, 2007

What have we discussed about languages so far this semester?

· Historical information

· Pascal language was named after the famous mathematician by Niklaus Wirth

· Pascal was created as a teaching language and early compilers translated it to P-code

· FORTRAN was intended to perform mathematical functions created by a team led by John Backus at IBM

· GoTo statements are considered harmful and made languages hard to understand. There was a letter written to the Communications of the ACM that generated a lot of controversy over this issue
· Programming languages started with machine language, then progressed to assembly, and then high level (first FORTRAN then Pascal)

· FORTRAN was created to generate assembly code equivalent in efficiency to code generated by an efficient assembly programmer

· Reasons why we study programming languages

· Increased capacity to express ideas

· Improved background for choosing appropriate languages

· Increased ability to learn new languages

· Better understanding of the significance of implementation

· Overall advancement of computing

· Application domains

· Scientific

· Business

· Artificial intelligence

· Systems programming

· Web software

· Language evaluation criteria

· Readability

· Writability

· Reliability

· Simplicity/orthogonality

· Control structures

· Data types and structures

· Syntax design

· Support for abstraction

· Expressivity

· Type checking

· Exception handling

· Restricted aliasing

· Language translation methods

· Compilation

· Pure interpretation

· Hybrid implementation

· Preprocessing

· Language paradigms 

· Object-oriented

· Procedural

· Functional

· Event-based

· Constraint-based

· Imperative

· Basic statements

· Assignment

· Input

· Output

· Selection

· Iteration

· Ways of describing languages

· Sentences

· Lexemes

· Tokens

· Metalanguages

· Backus-Naur Form and Context-Free Grammars

· Terminal symbols

· Nonterminals

· Special words

· Reserve words

· Keywords

· Data types

· Scalar

· Composite

· Integer

· Float

· Real

· Character

· String

· Array

· Built-in functions

· Arithmetic
· Transfer

· Ordinal

· Boolean

· Input and output

· File handling

· Dynamic allocation

· Transfer

· Subprogram types

· Functions return a single value

· One which returns multiple values or none at all – returns values through the parameter list

· Parameter passing modes

· Copy

· Name

· Reference

· Result

· Value

· Value-result

· Languages

· Pseudocode

· FORTRAN

· LISP

· ALGOL 60

· COBOL

· BASIC

· PL/I

· APL

· SNOBOL

· SIMULA 67

· ALGOL 68

· Prolog

· Ada

· Smalltalk

· C++

· Java

· JavaScript, PHP, Python

· C#

· Markup/hybrid languages

· Metalanguages (BNF)

