Name Chris Dilbeck

Abbreviated Review1 – 2:30 class

October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· machine code

· Assembly language

· FORTRAN was the first high level programming language – IBM – john Backus – team effort

· Pascal was created by Niklaus Wirth named after Blaise Pascal who was a French mathematician of the ____ century - created as a teaching language for computer science students – one person effort

· reasons why we study programming languages

· To improve future and existing languages

· To make it easier to learn new languages

· To improve one's ability to choose an appropriate language for the task.

· To understand the design decisions that went into implementing language features

· application domains

· Specific areas of computer and software use. Can change the way you would want to write software.

· Scientific applications: using computers to solve problems in science and math.

· Business

· Web

· Mobile device

· Operating systems

· language evaluation criteria

· readability

· writability

· robust

· powerful

· cost

· language translation methods

· Compilation: Converts program code directly into machine language that runs on the hardware or on a very low level of software.

· Interpretation: Uses a program called an interpreter that converts each instruction as the program runs into native language. Interpreters effectively create virtual machines on which other programs can run.

· Hybrid: Java. A compiler turns Java code into the “machine” language of the Java Virtual Machine. The VM then runs that compiled code like an interpreter would.

· language paradigms

· Imperative/Procedural: Programs are constructed as sets of procedures connected together. To extend the functionality of your program, you add more procedures/functions to it.

· Functional: Languages like LISP. They use function calls as their primary way of defining the program's sequence.

· Object-oriented: Programs are constructed to mimic the system they are representing using classes (templates for a set of objects that could exist) that eventually create objects. (specific instances of classes with their own data values) To extend the functionality of an object-oriented program, you can either add behaviors and data to objects that exist, or add more objects that do different things.

· basic statements

· output

· input

· assignment

· iteration

· selection

· ways of describing languages

· Metalanguage: a language like BNF that is used to describe the syntax of another language.

· special words

· Keywords that have special meaning to the compiler or interpreter and can not be used as identifiers.

· Data types are reserved words.

· Statement identifiers, such as “if” and “while” are reserved words, although FORTRAN is loose on this.

· Program start and end statements are reserved words.

· data types

· simple types

· integer

· real

· double precision

· character

· Boolean

· Structured types

· String

· Array

· Complex

· record

· built-in functions

· Built-in functions are functions that are recognized by the compiler without the actual code having to be included in the user's program.

· String management functions, type conversion functions, as well as input and output functions can be built-in functions.

· Java handles them differently. It instead has built-in class libraries that users can import to access different functionality.

· subprogram types

· Procedures/void functions: Subprograms that do not return a value directly. They may assign new values to or change their parameters, but they do not actually return a value that you can save in memory.

· Non-void functions: Functions that return a single value. They can do this via a return statement or by variable assignment to their own name.

· parameter passing modes

· By reference: Passing a parameter by reference to a subprogram allows that subprogram's changes to the parameter to be reflected in the calling function.

· By value: Passing a parameter by value copies the parameter into the local scope of the subprogram. Changes to the parameter are not reflected in the calling function.

· Languages

· Fortran: Early programming language implemented on punch cards. Designed by IBM. Developed significantly over time, implementing things like dynamically sized arrays and built-in functions in its later versions.

· Pascal: Developed by an individual, Niklaus Wirth, in order to teach new programmers the art. Very loose type checking, built-in functions are overloaded to accept all kinds of arguments.

