Name Ben Breeden
Abbreviated Review1 – 2:00 class
October 2, 2007

What have we discussed about languages so far this semester?

· some historical information

· machine code

· Assembly language

· FORTRAN was the first high level programming language – IBM – john Backus – team effort

· Pascal was created by Niklaus Wirth named after Blaise Pascal who was a French mathematician of the 17th century - created as a teaching language for computer science students – one person effort
· reasons why we study programming languages

· Increased ability to express ideas

· Improved background for choosing appropriate languages

· Increased ability to learn new languages

· Better understanding of significance of implementation

· Overall advancement of computing
· application domains
· Scientific applications

· Large number of floating point computations

· Fortran

· Business applications

· Produce reports, use decimal numbers and characters

· COBOL

· Artificial intelligence

· Symbols rather than numbers manipulated

· LISP

· Systems programming

· Need efficiency because of continuous use

· C

· Web Software

· Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g., PHP), general-purpose (e.g., Java)

· language evaluation criteria

· Readability: the ease with which programs can be read and understood
· Overall simplicity

· A manageable set of features and constructs

· Few feature multiplicity (means of doing the same operation)

· Minimal operator overloading

· Orthogonality

· A relatively small set of primitive constructs can be combined in a relatively small number of ways

· Every possible combination is legal

· Control statements

· The presence of well-known control structures (e.g., while statement)

· Data types and structures

· The presence of adequate facilities for defining data structures

· Syntax considerations

· Identifier forms: flexible composition

· Special words and methods of forming compound statements

· Form and meaning: self-descriptive constructs, meaningful keywords

· Writability: the ease with which a language can be used to create programs
· Simplicity and orthogonality

· Few constructs, a small number of primitives, a small set of rules for combining them

· Support for abstraction

· The ability to define and use complex structures or operations in ways that allow details to be ignored

· Expressivity

· A set of relatively convenient ways of specifying operations

· Example: the inclusion of for statement in many modern languages

· Reliability: conformance to specifications (i.e., performs to its specifications)
· Type checking

· Testing for type errors

· Exception handling

· Intercept run-time errors and take corrective measures

· Aliasing

· Presence of two or more distinct referencing methods for the same memory location

· Readability and writability

· A language that does not support “natural” ways of expressing an algorithm will necessarily use “unnatural” approaches, and hence reduced reliability

· Cost: the ultimate total cost
· Training programmers to use language

· Writing programs (closeness to particular applications)

· Compiling programs

· Executing programs

· Language implementation system: availability of free compilers

· Reliability: poor reliability leads to high costs

· Maintaining programs

· robust
· powerful
· other
· Portability

· The ease with which programs can be moved from one implementation to another

· Generality

· The applicability to a wide range of applications

· Well-definedness

· The completeness and precision of the language’s official definition

· language translation methods
· Compilation

· Programs are translated into machine language

· Pure Interpretation

· Programs are interpreted by another program known as an interpreter

· Hybrid Implementation Systems

· A compromise between compilers and pure interpreters

· language paradigms
· Imperative

· Central features are variables, assignment statements, and iteration

· Examples: C, Pascal

· Functional

· Main means of making computations is by applying functions to given parameters

· Examples: LISP, Scheme

· Logic

· Rule-based (rules are specified in no particular order)

· Example: Prolog

· Object-oriented

· Data abstraction, inheritance, late binding

· Examples: Java, C++

· Markup

· New; not a programming per se, but used to specify the layout of information in Web documents

· Examples: XHTML, XML

· basic statements

· output

· input

· assignment

· iteration

· selection

· ways of describing languages

· English language

· BNF

· BNF alternatives

· Extended BNF

· Language theory

· Type 0: Recursively enumerable languages

· Type 1: Context-sensitive languages

· Type 2: Context-free languages

· Type 3: Regular languages
· special words

· word which has a special grammatical meaning to a language and cannot be used as an identifier in that language.
· Some languages, like fortran, can assign variables to most words

· data types

· simple types

· integer

· real
· double precisioncharacter
· Boolean

· Structured types

· String

· Array

· Complex

· record

· built-in functions

· pure functions

· Have no side effects

· Opposite would be subprograms

· Subprograms

· Have side effects

· Usually pass by reference

· recursion

· occurs when a function can call itself

· useful for many applications

· some languages support

· some don’t

· mathematics

· helpful in finance, statistics, math theory

· programs often have a lot of built in mathematical functions
· subprogram types

· functions return A single value

· one which returns multiple values or none at all – returns values through the parameter list

· parameter passing modes

· reference – passes a pointer to the parameter

· Changes made to the parameter are reflected in the main program

· Value – passes the value of a parameter

· Changes made to the parameter are NOT reflected in the main program

· Languages

· FORTRAN

· LISP

· Pascal

· BASIC

· C

· COBOL

· Ada

· Perl

· Java

· PHP

· Prolog

· C++, C#

· Python

