FORTRAN use of columns

a. Comment statement

C in column 1 was usual

* in column 1

! in column 1 for Lahey FORTRAN

b. Labels

numbers in columns 1 through 5

c. Continuation card

entry in column 6

use an upper case C

d. Program statements

columns 7 through 72

e. Sequencing

columns 73-80

f. Data

in any columns

Data types

INTEGER

· Variable Names which begin with the letters I – N are by default, integer variables.

· Integer variables beginning with these letters do not have to be declared

REAL

· Variable names which begin with any letter other than I - N are by defaults, real.

· Real variables beginning with any letter other than I - N do not have to be declared

LOGICAL

· Logical variables must be declared

· Logical values are .TRUE. .FALSE.

COMPLEX

· Complex variables must be declared

· Complex variables have a real and an imaginary part

· Complex C - is an example declaration

· C = COMPLX (A,B) will create a complex number C = A + iB where i = the square root of -1

DOUBLE PRECISION

· Double precision variables must be declared

CHARACTER

· Type used for holding Strings

Data Structure - ARRAY

 Array Declaration examples

DIMENSION A(3)

· declares a one dimensional array with 3 elements

· subscripts start a 1

· array A has 3 locations A(1), A(2), A(3)

DIMENSION X(4,5)

· declares a two dimensional array with 4 rows and 5 columns

· array X has 20 locations in 4 rows and 5 columns

OPERATORS

Arithmetic operators

· +

· -

· *

· /

· **

Relational operators

· .EQ.

· .NE.

· .GT.

· .GE.

· .LT.

· .LE.

Logical operators

· AND

· OR

· NOT

 Assignment operator

· =

FORTRAN Statements

Non-executable

END
· stops the compilation process of a unit

FORMAT descriptors
· L for Logical

· F ...for fixed point

· I for integer

· E ...for exponential data

· D for double precision

· H for characters

CONTINUE

· non-executable statement

· generally used to mark the end of a DO loop and to affix the label to

DATA

· used to specify the initial values of certain variables at compile time

· can not be used during program execution (run time)

· example: DATA X/2.16/,Y/31.8/,I/26/

CARRIAGE CONTROL CHARACTERS – for output
· 1x a blank space

· ‘ ‘ (a blank space) - advance 1 line (i.e. newline, or single space)

· ‘0’ advance 2 lines (i.e. double space)

· ‘-‘ advance 3 lines - not all compilers

· ‘1’ advance to top of next page

· ‘+’ do not advance to a new line (i.e. overstrike)

Executable

1. STOP statement

stops the execution of the program

can occur anywhere in the program

can occur in more than one place, the one reached first stops the program

it’s not good form to have multiple stop statements

2. ASSIGNMENT statement

 variable = expression

3. CONDITIONAL
· 3 types of selection statements
 Example 1 (form and code) IF statement

 IF (Boolean condition) DOTHIS

 IF (X .GT. O.O) GO TO 7
 NUMNEG = NUMNEG+ 1

 GO TO 8

7 NUMPOS = NUMPOS + 1

8 ICOUNT = ICOUNT + 1

 Example 2 (form, explanation and code) - ARITHMETIC IF

 If (arithmetic value) label, label2, label3

· goes to statement labeled 25 if I < 0;
· goes to statement labeled 365 if I = 0;
· goes to statement labeled 43 if I > 0

 IF (I) 25, 365, 43

 Example 3 (form, explanation and code) - COMPUTED GO TO

 GO T0 (label1, label2, label3, label4) , variableName

· goes to statement labled 23 if J = 1;
· goes to statement labeled 45 if J = 2,
· goes to statement labeled 73 if J = 3; etc.

 GO TO (23,45,73,98 104), J

 Note: examples 2 and 3 are scheduled to be DEPRECATED

4. INPUT statement (form and code)
 READ (5,label) list of variables to be read

· The 5 specifies the default input device. The label refers to the associated format statement

 READ (5, 12) X,I

 12 FORMAT (F2.1, I3)

5. OUTPUT statement (form and code) - more below

The 6 specifies the default output device. The label refers to the associated

Format statement. The F in F4.1 specifies that it’s a fixed point number; the I in

I3 specifies that it is an integer. The integer following the F and the I specifies

the number of columns to be used. The .1 in F4.1 specifies that only one place

after the decimal point is to be shown

WRITE (6, label) list of variables to be printed

 WRITE (6,13) X,I

13 FORMAT (1X, F4.1,I5)

6. LOOP statement (form and code)

 DO label variableName = startvalue, endvalue, modificationValue

 …

 label CONTINUE

 DO 10 M = 5, 13, 1

 A = 3 * M

 WRITE (6, 59) A…

10 CONTINUE

7. RETURN statement

· Returns from functions or subroutines (the 2 kinds of subprograms)

· The return statement is an executable statement
8. Subprograms
· FORTRAN has three types of subprograms: statement functions, subroutines and functions.
· Functions return a single value by assignment to the function name.

· Subroutines return zero, one or many values through the parameter list.
· FORTRAN parameters are passed by reference (address)
· The code for functions and subroutines subprograms should physically follow the code for the main program

Statement functions
· have the general form: name (a1, a2 an) = F(a1, a2 an)
· the parenthesized variables on the left side represent the arguments to the function.
· The entire right side is an expression which specifies the value of the function

P(X) = (A*X + B)*X + C

 Subroutines can be parameterless, or have parameters
· Here is an example of a parameterless subroutine.

 SUBROUTINE PRINTHI

 WRITE (6, 10)

10 FORMAT (1X, ‘ HI ‘)

 RETURN

 END

· The calling statement in the main program for the above subroutine would b
· Note that the word subroutine does NOT appear in the call statement

 CALL PRINTHI

· Below is the skeleton for a subroutine with parameters.
· By default, the values this subprogram expects to receive are real (i.e. fixed point) values.
· If you intend to pass in integers you must add a line directly following the subroutine declaration which declares X,Y, and Z as integers (i.e. INTEGER X,Y,Z)

· Unlike Java, changes that are made to the formal parameters (inside the subroutine)! are reflected (affect) the actual (calling) parameters.

 SUBROUTINE SORXYZ (X, Y, Z)

...

...

 RETURN

 END

Functions
· FORTRAN functions return a single value and return it by assigning the value to the function name (inside the function). Recursion was not available in early FORTRAN and we will not be using it in our FORTRAN programs.

· By default, function names indicate the type of the return value.

· The function below finds the sum of the three numbers X, Y, and Z which are assumed to be real (floating point) numbers.
· If you want them ! to be integers, you must declare them as integers inside the function.

 FUNCTION SUM (X,Y,Z)

 SUM = X + Y + Z

 RETURN

 END

· To call a function you simply write the function name followed by its actual parameters in parentheses.
· The returned value ‘replaces’ the call and you should store the returned value somewhere.
· Below is an example.
· Note that the returned SUM replaces the right hand side of the assignment statement and is stored in the variable ANSWER on the left of the assignment operator.

ANSWER = SUM (A,B,C)

Exception handling statements
· END = label

· ERR = label

Graduate Students

COMMON statements

IMPLICIT statements

EQUIVALENCE statements

