Chapter 5

is really about Identifiers (i.e. variables and constants)
Identifiers

· names issues

· length
· case sensitivity

· key or reserved words

· name forms

· writability problems

· keyword is special only in certain contexts

· reserved words may not be used as identifiers

· required first character type

· other allowable characters

· before FORTRAN90 names could have spaces which were ignored

· variables

· what are they?

· cell or collection of cells

· what are their attributes?

· name

· address

· what is it

· machine memory address with which it is associated

· same name may be associated with different addresses dependent on where it occurs in a program (subprograms)
· same name may be associated with different addresses dependent on when it occurs in a program (stack)

· l-value

· aliases

· C and C++ union types

· pointers

· subprogram parameters

· type

· determines range of values

· determines operations that can be performed

· value

· physical contents of memory cell or cells associated with the variable

· abstract contents of memory cell

· r-value

· lifetime

· how long is it resident in memory?

· how long is a variable bound to a specific memory location?

· scope

· where in the program is it known?

· bindings
· association between an attribute and an entity

· association between an operation and a symbol

· time
· language design time

· language implementation time

· compile time

· load time

· link time

· run time

· types
· static

· occurs before runtime and remains unchanged throughout program execution

· used by FORTRAN, C, C++

· dynamic

· occurs during runtime and can change during program execution

· not specified by a declaration, nor by the spelling of its name - bound when it is assigned a value

· SNOBOL4, JavaScript, PHP

· must be interpreted language

· type inference

· ML supports both functional and imperative programming

· function types can be inferred from the types of the arguments (p. 218)

· used by Haskell and Miranda also

· how

· implicit

· detrimental to reliability

· FORTRAN, PL/I, BASIC, Perl, JavaScript, ML

· explicit

· most languages designed since mid-1960s
· dynamic
· based on assignment

· in Java Script and PHP and Snobol4

· inference

· storage

· Static variables

· bound to memory cells before program execution begins and remain bound to those same memory cells until program execution terminates
· history-sensitive

· efficient

· Stack-dynamic variables

· are those whose storage bindings are created when their declarations statements are elaborated but whose types are statically bound.

· occurs during runtime

· recursive programs require some form of dynamic local storage

· Explicit Heap-Dynamic variables

· nameless memory cells that are allocated and deallocated by explicit run-time instructions specified by the programmer

· Implicit Heap-Dynamic variables

· type checking

· compatibility

· coercion

· error

· dynamic or static

· Strong typing

· Type compatibility

· Scope

· the scope of a variable is the range of statements in which the variable is visible

· a variable is visible in a statement if it can be referenced in that statement

· local variables – those declared in a block

· non-local variables – not declared in the block but visible there

· static scope

· static parent

· static ancestors

· blocks

· Dynamic scope
· evaluation

