CS430 Fall 2006
Chapter Outline of Concepts of Programming Languages by Robert Sebesta

· Ch. 1: Why Study Programming Languages?

· Concepts of programming languages (reasons for studying) 2-4
· Programming domains (5-8)
· Language evaluation criteria (7-20)
· architecture effects language design – von Neumann architecture in which programs and data are stored in same memory - CPU which executes the memory is separate and instructions and data need to be moved from memory and results back to memory
· Language categories (paradigms) (23-32) – example languages for each
· definitions and differences between interpretation and compilation
· Von Neumann bottleneck – instructions can be executed faster than they can be moved to the CPU for execution.
· Ch. 2: History of Programming Languages

· FORTRAN
· arithmetic if
· do loop
· format statements
· computed goto
· error handling
· goal of language design
· Be able to read , determine output (trace), write FORTRAN code
· Functional programming
· intended for symbolic computation
· useful in AI
· LISP atoms and lists
· LISP read eval print loop
· Be able to read , determine output (trace), write LISP code
· Design goals of BASIC
· Snobol
· design goals
· parameter passing mode
· Be able to read , determine output (trace), write Pascal code
· Pascal
· design goal and use
· parameter passing modes
· block structure inherited from Algol
· Be able to read , determine output (trace), write Pascal code
· Prolog
· design goal and use
· facts and rules
· Be able to read , determine output (trace), write Prolog code
· Ada
· design goals
· parameter passing modes
· Java
· Ch. 3: Syntax

· Describing syntax
· strings of a language are sentences or statements
· syntax rules specify which strings are legal
· BNF
· whole programming languages can be described by context-free grammars
· natural notation for describing syntax
· metalanguage is a language that is used to describe another language
· BNF is a metalanguage for programming languages
· be able to generate valid strings, given a grammar
· be able to draw a parse tree and a left-most derivation showing the generation of valid strings, given a grammar
· be able to determine whether a string is valid, given a grammar
· know what makes a grammar ambiguous and be able to determine if a grammar is ambiguous
· given a grammar, be able to describe accurately and completely in simple English what the sentences of the grammar consist of
· know what EBNF added to BNF
· Dr. Adams’ note: Know 4 elements of a grammar
· (1. terminals, 2. nonterminals, 3. productions, 4. goals)
· Ch. 4: (Excluded from final)

· Ch. 5: Scope Rules
· Names
· difference between keywords and reserved words
· know which languages we have looked at have reserved words and which do not
· know what pre-defined terms are
· Binding
· four types of bindings
· name, value, type, location
· when does each type of binding occur?
· run time, load time, compile time, language design time, etc.
· implicit versus explicit
· static versus dynamic
· lifetime of a variable – allocation / deallocation
· stack-dynamic
· explicit heap-dynamic
· implicit heap-dynamic
· Type checking
· type compatibility
· strong typing
· Scope
· static
· dynamic
· block scope
· referencing environment
· Initialization
· Ch. 6: Data Types
· Primitive data types
· String types
· design choices
· Ordinal types
· User-defined types
· Arrays
· address computation for single-dimensional arrays
· address computation for two-dimensional arrays stored in row-major order
· address computation for two-dimensional arrays stored in column-major order
· Records
· difference between arrays and records
· how record fields are referred to
· Pointers
· anonymous variables
· dynamic variables
· dereferencing
· problems
· dangling pointers
· garbage
· Ch. 7: Expressions & Assignments
· Arithmetic expressions
· what do you need to know to evaluate arithmetic expressions
· Overloaded operators
· Type conversion
· implicit
· explicit
· what languages allow/prohibit them
· which languages allow mixed mode expressions
· Relational & Boolean expressions
· use of boolean variables in conditional expressions
· short circuit evaluation
· Assignment statements
· Ch. 8: Statement-level Control Structures
· Selection statements
· definition
· forms
· required elements
· Iterative statements
· definition
· different types
· pre-test/post-test
· counter controlled / logic controlled
· forms
· getting out
· Unconditional branching
· Ch. 9: Subprograms
· Subprograms
· Procedures & functions
· similarities and differences
· which languages use which
· Design issues
· Parameter passing
· pass by value
· pass by reference
· pass by result
· pass by value-result
· pass by name
· type checking of parameters
· which languages use which method
· parameter mode indicators in languages studied
· Overloaded subprograms
· Generic subprograms
· definition
· Design issues
· Ch. 10: (Excluded from final)

· except for activation records
· static links
· dynamic links
· return address
· stack
· Ch. 11: Abstract Data Types
· definition of an abstract data type
· Data abstraction
· Design issues
· Language examples
· Ada packages as encapsulating constructs
· specifications – public interface
· bodies – provide implementation – may be public or private
· Dr. Adams’ note: encapsulation
· the implementation can be hidden for simplification purposes
· Ch. 12: Object Oriented Programming (excluded from final)
· except as it’s used in Alice
· Ch. 13: Concurrency (excluded from final)

· except as it’s used in Alice
· Ch. 14: Exception Handling
· only basic concepts of exception handling and exception handling design issues
· Java exception handling
· FORTRAN “exception handling”
· Ch. 15: Functional Programming Languages
· Mathematical functions
· LISP
· Be able to read , determine output (trace), write LISP code
· Dr. Adams’ note: functional language applications
· Know that best use is for AI applications; models the real world differently than other language paradigms (recursion and math are more natural in functional languages)
· Ch. 16: Logic Programming Languages
· Logic programming (624-625)
· Prolog history (625-626)
· Prolog basics (626-640)
· Be able to read , determine output (trace), write Prolog code
· Prolog deficiencies
· Prolog applications
