FORTRAN’s included functions

· MAX

· Max(homogeneous parameter list)

· Will take integers or floats, but you cannot use both.

· Returns whatever variable type you enter originally

· The is another function called IMAX that does the same thing but only accepts or returns integers

· XMAX does the same thing, but only for floats

· MIN

· Works exactly like MAX, but finds the minimum

· IFIX

· IFIX(real)
· Returns a truncated integer – doesn’t round
· MOD

· MOD(integer, integer)

· Finds the remainder when the first value is divided by the second

· Always works with integers

· LOG

· Only works if

· Real = log(real)

· Integer = log(real)

· Truncates

· Parameter is > 0

· Calculates log E
· LOG10 calculates log 10
· FLOAT
· FLOAT(integer)

· Only takes integers

· Returns a float

· INT

· INT(real)

· Returns a truncated integer

· If you give it a complex number it will only work on the real part

· CHAR

· CHAR(integer)

· Only takes an integer

· Returns the ASCII character
· ICHAR

· ICHAR(character)

· Returns the integer value

· SUM

· SUM(array, dimension, mask)

· Take an array w/ optional dimension and optional mask

· DOESN’T WORK IN OUR FORTRAN

· TAN

· TAN(real)

· Only takes a real

· Returns a real

· Only works when the parameter is in radians

· FLOOR

· FLOOR(real)

· Returns an integer value

· Numbers < 0, rounds down (-3.7 (-4)

· Numbers > 0, rounds down (3.7 (3)

· CEILING

· CEILING (real)

· Returns an integer value

· Numbers < 0, -3.7 => -3

· Numbers > 0 . 3.7 => 4

· SIND

· SIND(real)

· Returns a real

· This works in degrees

· The function SIN(real) works in radians

· SQRT

· SQRT(real)

· Returns a real

· Will not work with integers

· Requires that the parameter be >= 0

· ABS

· ABS(real)

· ABS(integer)

· Returns the same type that was passed in

· Returns the value of whatever you entered as a positive number

srand (integer) is a subroutine call – it’s not a function
 provides a seed – higher is better than lower – and higher primes are even better as seeds

URLs for FORTRAN functions from Alan and Kurt
https://webmail.jmu.edu/cgi-bin/fetch.cgi?url=http%3A%2F%2Fwww.ncsa.uiuc.edu%2FUserInfo%2FResources%2FHardware%2FIBMp690%2FIBM%2Fusr%2Fshare%2Fman%2Finfo%2Fen_US%2Fxlf%2Fhtml%2Flr02.HTM
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/share/man/info/en_US/xlf/html/lr02.HTM#CONTENT_614
Pascal Code for handling files discussed in class
 Testfiles.pp
 Testfiles2.pp
PASCAL NOTES

Pascal parameter types:

· VAR

· Pass by address

· VALUE

· Pass by copy

· The default

Look at the Pascal Tutorial on the website. It explains everything you need to know to program in Pascal.
The structure of a Pascal program is absolute. You must declare variables in the proper order.

Never use a semicolon after the word DO or before the word ELSE.

You can format your output, play with it.

NEVER HARDCODE A FILE NAME IN TO YOUR PROGRAM.

There are four logical operators.

Never test to see if something is EQUAL to true.

There are two branching or selection statements. Behaves like Java in that if there is a single statement then you do not have to create a group. If there is more than one statement you must create a group.

In Pascal, the semicolon is a separator, so you don’t want to put one before an else. You can put one before an end.

In Free Pascal, when you make a new file do not use the template.

TestFiles example code

Provides an overview of file handling.

In testFiles, you will always have output and input (output to the screen, input from the input files). The other two parameters are the file names for the input and output.

Free Pascal will color code syntax for you, so it may be better to use than notepad.

The way you relate an internal name to an external name is with an assign statement. Ex: Assign (inFile, inFileName)

Reset moves the read head to the start of the file.

Rewrite moves the write head to the start of the file. It will destroy what is in a file if anything already exists.

Make sure you close your files when you are done.

You can compile, make or build then run. We will not be building.

testFiles2 example code

The first white line is a plain write statement. It will write directly to the screen.

The second write statement should write directly to the output file.

Every time you want something to go to the screen and the output file, you need to write a write statement for each. You can write a procedure that will take the information to be written and the file name as parameters and have two write statements within the procedure.

NOTE: The file parameter must be a VAR parameter.

Pressing F8 will walk you through the code one line at a time, it will bring up the window when you need to input something.
Homework
Program due on Tuesday.

