CS 335 – Programming Project #1

p. 2
Spring 2005

CS 335 – Programming Languages - Spring 2005

Programming Project #1

Due: Monday, April 4th, beginning of class

Purpose: get some experience programing in Squeak

Programming Project #1

This was adapted from two labs from CS 2803 at Georgia Tech, at:

http://www.cc.gatech.edu/classes/AY2000/cs2803ab_fall/labs/IntroLab.html

and

http://www.cc.gatech.edu/classes/AY2000/cs2803ab_fall/labs/MuppetLab.html

Step One: Basic Usage: The Mouse

(This should be review after assignment #6, but just in case it might be useful...)

Smalltalk uses all three buttons of the mouse extensively. Within a Smalltalk window, the buttons work as follows:

 * red/left--make selections and move the cursor around

 * yellow/middle--opens a menu specific to the window or window pane you are clicking in

 * blue/right--opens a menu with window options such as close and resize.

Also, you can left click on the gray background of the Squeak window and get a system-wide menu with options to create new windows and to exit the systems.

Try it now. Left click on the background, hold the button down, select "open", and select "open transcript". An orange window labeled "Transcript" should appear. Use the left button on the borders to shrink this window down a little, and then move it to the bottom of the screen out of the way. This window is where your output will appear later on.

As a second test, left click on the background, hold the button down, and select "save". The cursor should change for a couple of seconds as Squeak saves a current version of your image.

Step Two: fileOut and fileIn

Exporting a class definition from Squeak is known as performing a fileOut. Similarly, importing a class definition into Squeak is known as performing a fileIn. You need to open a System Browser in order to do either of these actions. Click the left button on the gray background area, select "open", and select "open browser". A new window should appear, which is divided into 5 subwindows ("panes"): four panes across the top and one big one at the bottom.

The leftmost pane is a list of categories. Each category contains a bunch of related classes. Scroll down the list until you reach the Music-Scores category and select it. You should see a number of classes listed in the pane immediately to the right: Select AmbientEvent and then right-click in the same pane. Choose "fileOut" from the Menu. The cursor will change briefly to a pencil, indicating that Squeak is saving a copy of the class definition. In addition, the Transcript will show the name of the class you just exported.

There should now be a new file named AmbientEvent.st (probably in the same directory where your .image file is stored). By default, when you fileOut a class from Squeak, the class definition is saved in a file named 'class name.st'. This will be the primary way that you save out the code that you will be writing.

Importing a file is simple as well. Left-click on the grey desktop and choose "open..." and then "file list..." from the resulting menu. You will then be shown a browser window containing the contents of your directory. Select the .st file you desire, then right-click and choose fileIn from the menu. Squeak will then import the class definition into its class library.

Step Three: Your First Class and Method

Now we're going to use the System Browser to create your first Squeak class. Either find the System Browser window you used in Step Two or open a new one as you did in Step Two.

Press the right mouse button over the class categories list and choose the option to create a new category. Name this category Muppet Classes. Once you've done this, a new category will be inserted in the class categories list. Select this new category and you'll see that the class browser presents you with a template for defining a new class. In this template, you simply replace the pieces of the template that you want and leave the rest. Click in this template and replace NameOfClass with Muppet. Right-click and choose Accept from the menu and Squeak will compile your new class into the system.

Now that you've created a class, let's exercise it a little. When you Accepted your changes above, Squeak added the class to the list of classes in the Muppet Classes category. Since your Muppet class is a subclass of Object, it already knows how to do some things. For example, bring up your Workspace window and enter the following code:

kermit := Muppet new.

Transcript show: kermit printString.

Select this code and Do it, and look at your Transcript window. The Transcript window will read a Muppet, which is the default way Squeak prints objects.

Now you'll add a new method to your class. Select the Muppet class in the browser window and then the message category "no messages" in the message category window. Squeak will give you another template to use - this one is for methods. You'll learn later how to do things with this template, but for this step just replace all of the template with the following text:

greet "Return a pre-defined greeting" Transcript show: 'Hello there!'.

Be sure to include the quotation marks exactly as shown. Right click and Accept your work, and Squeak will add this method to the class.

Now pull up your Workspace window and enter the following code:

kermit := Muppet new.

kermit greet.

Select this code and Do it, and you will see your object greet you on the Transcript.

In Step Two, you used the fileOut technique to save a Squeak class to a file. Use it again to save your Muppet class to a file. You'll use the text in this file as the material that you turn in for this project. In the Workspace window, type

(FileStream oldFileNamed: 'Muppet.st') edit.

and do it. You'll be shown the file editor. This is a text editor with some enhanced capabilities. If you right-click in the editor window you'll see a menu with lots of different choices. Use the mouse to select the entire contents of the file and choose "copy" from the right-button menu to copy the selected text to the Clipboard.

Step 4 - Creating Muppet Classes

Now, you will use Squeak Smalltalk to create a small hierarchy of objects that are person- (or muppet)-like in that they have names and can greet you. You will create one abstract class called Muppet, and two concrete classes called FrogMuppet and GrouchMuppet.

By the end of this you should:

 * Understand the functions of the most common windows in Squeak

 * Be able to create categories and classes in the System Browser

 * Be able to create protocols and write code for methods in the System Browser

 * Be able to use the Workspace to test your code.

To create a new class you need to open a System Browser. Click the left button on the gray background area, select "open", and select "open browser". A new window should appear, which has divided into 5 subwindows ("panes"): four panes across the top and one big one at the bottom.

The leftmost pane is a list of categories. Each category contains a bunch of related classes. Create a new category called MuppetProject by clicking the middle button in that pane, choosing "add item", and typing MuppetProject in the prompter window.

The category MuppetProject will be added to the category list, and a template for defining a new class appears. Now, create the Muppet class:

 * Move the mouse over the text pane (the big one at the bottom). Smalltalk won't notice your keystrokes otherwise.

 * Change the NameOfClass to Muppet

 * Change the instance variable names list to 'name greeting'. Be sure not to erase the quotes!

 * Change the class variable names list to ''. This means that there are no class variables.

Leave the Object specificaton alone, so that the superclass of Muppet will be Object.

The result should look something like this:

Object subclass: #Muppet

 instanceVariableNames: 'name greeting'

 classVariableNames: ''

 poolDictionaries: ''

 category: 'MuppetProject'

When you think you have got it, tell Smalltalk to accept the code: click in the text pane with the middle button and choose accept. Assuming you have made no syntax errors, the class should appear in the second pane of the browser. If you have made syntax errors, correct them and try again.

Now create the FrogMuppet and GrouchMuppet classes. What is the superclass of these classes? Do they have any instance or class variables?

Step 5: Adding Muppet Functionality

Now you will define the behavior of the Muppet class, which will be inherited by the FrogMuppet and GrouchMuppet classes.

The third list in the System Browser is for protocols, which are groups of related methods. Create a protocol for the Muppet class by selecting that class, choosing "add item" by center-clicking in the protocol list, and typing in accessing at the prompt.

A method template will appear in the text pane. To add each new method, you will replace the top line with the message name, place a comment in the double quotes, and insert the text at the bottom. After editing the template for the new method, you accept it to tell Smalltalk to compile it.

Create two methods for accessing the name variable, as follows.

First, create a name method by changing the template in the text pane to look like this:

name

 ^name

Now, use middle-button-menu to choose accept.

Click on name in the rightmost pane, deselecting it, so that the method template reappears. Edit the template to create a new method as follows:

name: aName

 name := aName.

Again, accept it. You now have two methods in the accessing protocol, name and name:.

Create a protocol for initializing, and place the following method inside it:

initialize

 greeting := 'I am an abstract muppet'.

Create a protocol for greeting, and place the following method inside it:

greet

 Transcript cr.

 Transcript show: greeting; cr.

 Transcript show: 'I am ', name; cr.

Open a workspace to test your code in, using the "open" menu from the background menu. Type the following code into the workspace:

| muppet |

muppet := Muppet new initialize.

muppet name: 'Jim Henson'.

muppet greet.

Select the text with the mouse, click the center button, and choose "do it". Do you get what you expect?

Step 6: Adding Subclass Functionality

Frogs and Grouches differ from ordinary Muppets in their greeting. For each class create initialization protocols. Create an initialize method for both classes that changes the greeting. The FrogMuppet greeting should be 'Hi Ho', and the GrouchMuppet greeting should by 'Go Away'.

Test your muppets with the following code:

| frogMuppet grouchMuppet |

frogMuppet := FrogMuppet new initialize.

grouchMuppet := GrouchMuppet new initialize.

frogMuppet name: 'Kermit the Frog'.

grouchMuppet name: 'Oscar the Grouch'.

frogMuppet greet.

grouchMuppet greet.

Step 7: Making the Muppets interact

Now, let's make the muppets interact. Write a method in the Muppet class that:

 * Takes another muppet as an argument.

 * Reads that muppet's name.

 * Greets the muppet by name.

When you execute the following code:

| frogMuppet grouchMuppet |

frogMuppet := FrogMuppet new initialize.

grouchMuppet := GrouchMuppet new initialize.

frogMuppet name: 'Kermit the Frog'.

grouchMuppet name: 'Oscar the Grouch'.

frogMuppet greetByName: grouchMuppet.

grouchMuppet greetByName: frogMuppet.

You should see:

Hi Ho, Oscar the Grouch! I am Kermit the Frog!

Go Away, Kermit the Frog! I don't care! I am Oscar the Grouch!

Step 8: Going further

(This step is worth 20 pts of this project's grade.)

You now have these three classes. Expand on them in some interesting way.

It needs to be significant --- adding methods at least, perhaps also adding additional classes if inspiration moves you. All three classes need to be modified in some appropriate fashion, by the time you are done; at least six additional methods need to be added, between the three classes. New methods and classes should include commenting in the style seen in other Squeak methods and classes!

Perhaps the muppets can have more capabilities; these might be more interesting interactions, or something graphical, or even something sound-based. (Obviously, you'd have to do some research to add graphical or sound-based capabilities.)

Make sure that all of your new code is within the MuppetsProject class category.

You will be graded based on if you meet the above specifications and criteria, based on how much effort you put into this, and based on if your additions work.

Step 9: Turning in the code

You should turn in a fileOut of the code you wrote.

To make the fileout, make sure the MuppetsProject class category is selected in a System Browser, and then choose "file out" from the middle-button menu in class-category pane (the one on the top left). The system will silently create a text file named MuppetsProject.st. sftp MuppetsProject.st to cs-server, and submit it using ~st10/132submit.

