CS 335 – S05

p. 20
Sharon M. Tuttle

CS 335 – Week 10, Lecture 2 – Spring 2005

*
Smalltalk and OOP, Part 4 of 4 (gulp!)

*
CK --- is it true? can you really double a quote to embed it in a string?

http://www.mvps.org/directx/smalltalk/articles/mt_vs_cpp.htm

*
from: http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html

from:
Back to the Future

The Story of Squeak, A Practical Smalltalk Written in Itself

by: Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay

...who are certainly in a position to know!

"Squeak is an open, highly-portable Smalltalk implementation

whose virtual machine is written entirely in Smalltalk,

making it easy to debug, analyze, and change.

To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks."

*
CONSIDER: grab more from this paper? Language-implementation stuff?

*
from: http://www.sra.co.jp/people/aoki/SmalltalkIdioms/chapter1/Chapter1_e.htm#SmalltalkFiles [but this is based on IBM VisualAge --- how standard IS it?]

"Virtual Machine / Virtual Image / Source File / Change File

"In this section, I will explain the relationship of the four files

"virtual machine",

"virtual image",

"source file", and

"change file".

In the previous section was explained how to create one's own personalized version of the virtual image and change file, but along with this, it is necessary to understand how these files are related.

The virtual machine (vw.exe), a binary format file, includes the filename extension ".exe" and is an executable application software program.

*
The virtual machine is something like a machine that "eats" the virtual image (described below),

*
and although it is itself software, since it is like a piece of hardware to "run" the virtual image, it is referred to as a virtual machine.

The Virtual Image (visualj.im), also a binary file, is something like the food of the virtual machine,

*
and represents the total contents of Smalltalk's object memory dumped into a file--for which reason it is referred to as a snapshot.

*
It has as its contents all the programming tools, including

*
the compiler,

*
browsers,

*
inspectors, and

*
all the programs you will write in Smalltalk,

...all translated into Byte Code format.

Byte code is the format of the food eaten by the virtual machine,

*
and is a kind of machine language.

*
It may be thought of as a command set consisting of commands to perform

*
the actions of stack manipulation,

*
access to variables,

*
sending of messages, etc.

*
As to why a sort of intermediate command set is used in preference to direct use of the CPU's native command set,

*
this is to provide independence of any particular CPU,

*
because hardware is improving and changing all the time, with modifications and extensions to CPU command sets,

*
while the byte code command set can remain unaffected.

*
If a program were not to be translated into byte code but rather translated directly into the the CPU command set and then stored in the virtual image (object memory),

then the virtual image would be extremely dependent on the CPU, and would lose all portability.

*
Hardware independence is implemented via the Smalltalk virtual image.

*
It is only necessary to port the virtual machine to various hardware platforms to assure binary-level portability of the virtual machine.

*
I use not only the Windows version of the virtual machine, but also the Macintosh and Unix versions.

*
Therefore, by using the file transfer protocol (ftp) between the various machines, it is necessary only to copy the object memory snapshot (virtual image) to another platform, without any changes whatsoever in the program itself, to have it run on Windows, on Macintosh, on Unix.

*
Because of the binary level compatibility, there is even no need to recompile on the other platform[s].

*
In other words, the virtual machine absorbs the differences between hardware platforms, so that the hardware independence of the virtual image can be assured.

*
From this point of view, the virtual machine is sometimes called the hardware reference platform.

A Source File (visualj.sou) is a file in text format.

*
Smalltalk programs are translated into byte code and arrayed in object memory (virtual image),

*
but a program's source code is not stored in the virtual image, but rather in this source file, being read into the virtual image as needed.

*
All source code of the existing class libraries is kept in this source file.

The Change File (visualj.cha) is also in text format, and is like most source files, except that it records the history of changes to the virtual image, written to it sequentially. This change file did not exist in the working directory, but when changes were made in the virtual image that resides in memory, such as when the time zone was set then the virtual image saved, a change in the virtual image in memory occurred, at which point the change file was newly created, and the history of any changes recorded.

Therefore, any Smalltalk programs you may create are considered to be changes of the virtual image in memory, and the source code thereof is stored in the change file. Note that this is not the source file. The source code of the existing class library (program) is stored in the source file, while the source code of any class library (program) that has been created, added, or modified is stored in the change file.

This concludes the explanation of the four major files of Smalltalk. In addition to these four, there is an on-line help file and a file for non-English menu text and so on, but basically the above four are all that is needed ot run VisualWorks and start programming in Smalltalk. The virtual image and the change file are particularly important. Please take care not to accidentally pair together an unrelated virtual image and change file."

*
CONSIDER: looking up and discussing ASSIGNMENT in Smalltalk...!

example at

http://www.jmcsweeney.co.uk/computing/m206/assignment_ex.php

...surely implies that assignment in Smalltalk is via references to objects --- looks very Java-like.

if frog1 is assigned to a new frog, it references that;

ditto for frog2;

if then say
frog1 := frog2

...then frog1 references the SAME frog object as frog2 --- changing ONE changes the OTHER (isn't that aliasing?)

and, "The object that was referenced by frog1 is no longer referenced and is garbage collected." http://www.jmcsweeney.co.uk/computing/m206/assignment.php

also from the same source: "A final point to appreciate, assignment does not involve any message sending." !!!

*
IF could find anything about its compilation (??) and garbage collection, wouldn't that be good? What is meant by incremental compilation in the "Gentle Intro to Squeak" slides?

*
more on Smalltalk garbage collection?

from: http://www.sra.co.jp/people/aoki/SmalltalkIdioms/chapter3/Chapter3_e.htm

"Smalltalk is equipped with an automatic memory management mechanism (garbage collector),

so the programmer never has to explicitly free up the memory that has been appropriated by objects.

In the memory space of objects, which is completely out of sight and out of mind for the user, there exists a garbage collector whose efforts work to automatically recycle memory resources.

Therefore, it is absolutely no chance that some kind of inappropriate release of memory resources could lead to a deadend pointer (dangling reference).

The programmer can program in Smalltalk with mind at peace regarding this task."

from: http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html

Storage Management

Apple Smalltalk had achieved good garbage collection behavior with a simple two-generation approach similar to [Unga84]. At startup, and after any full garbage collection (a mark and sweep of the entire image), all surviving objects were considered to be old, and all objects created subsequently (until the next full collection) to be new. All pointer stores were checked and a table maintained of "root" objects&emdash;old objects that might contain pointers to new objects. In this way, an incremental mark phase could be achieved by marking all new objects reachable from these roots and sweeping the new object area; unmarked new objects were garbage. Compaction was simple in that system, owing to its use of an object table. Full garbage collection was triggered either by an overflow of the roots table, or by failure of an incremental collection to reclaim a significant amount of space. That system was known to run acceptably with less than 500k of free space and to perform incremental reclamations in under 250 milliseconds on hardware of the 80's (16MHz 68020).

For Squeak, we determined to apply the same approach to our new system of 32-bit direct pointers. We were faced immediately with a number of challenges. First, we had to write an in-place mark phase capable of dealing with our variable-length headers, including those that did not have an actual class pointer in them. Then there was the need to produce a structure for remapping object pointers during compaction, since we did not have the convenient indirection of an object table. Finally there was the challenge of rectifying all the object pointers in memory within an acceptable time.

The remapping of object pointers was accomplished by building a number of relocation blocks down from the unused end of memory. A thousand such blocks are reserved outside the object heap, ensuring that at least one thousand objects can be moved even when there is very little free space. However, if the object heap ends with a free block, that space is also used for relocation blocks. If there is not enough room for the number of relocation blocks needed to do compaction in a single pass (almost never), then the compaction may be done in multiple passes. Each pass generates free space at the end of the object heap which can then be used to create additional relocation blocks for the next pass.

One more issue remained to be dealt with, and that was support of the become operation without an object table. (The Smalltalk become primitive atomically exchanges the identity of two objects; to Smalltalk code, each object appears to turn into, or "become," the other.) With an object table, the become primitive simply exchanges the contents of two object table entries. Without an object table, it requires a full scan of memory to replace every pointer to one object with a pointer to the other. Since full memory scans are relatively costly, we made two changes. First, we eliminated most uses of become in the Squeak image by changing certain collection classes to store their elements in separate Array objects instead of indexed fields. However, become operations are essential when adding an instance variable to a class with extant instances, as each instance must mutate into a larger object to accommodate the new variable. So, our second change was to restructure the primitive to one that exchanges the identity of many objects at once. This allows all the instances of a class to be mutated in a single pass through memory. The code for this operation uses the same technique and, in fact, the very same code, as that used to rectify pointers after compaction.

We originally sought to minimize compaction frequency, owing to the overhead associated with rectifying direct addresses. Our strategy was to do a fast mark and sweep, returning objects to a number of free lists, depending on size. Only when memory became overly fragmented would we do a consolidating compaction.

As we studied and optimized the Squeak garbage collector, however, we were able radically to simplify this approach. Since an incremental reclamation only compacts the new object space, it is only necessary to rectify the surviving new objects and any old objects that point to them. The latter are exactly those objects marked as root objects. Since there are typically just a few root objects and not many survivors (most objects die young), we discovered that compaction after an incremental reclamation could be done quickly. In fact, due to the overhead of managing free lists, it turned out to be more efficient to compact after every incremental reclamation and eliminate free lists altogether. This was especially gratifying since issues of fragmentation and coalescing had been a burden in design, analysis, and coding strategy.

Two policy refinements reduced the incremental garbage collection pauses to the point where Squeak became usable for real-time applications such as music and animation. First, a counter is incremented each time an object is allocated. When this counter reaches some threshold, an incremental collection is done even if there is plenty of free space left. This reduces the number of new objects that must be scanned in the sweep phase, and also limits the number of surviving objects. By doing a little work often, each incremental collection completes quickly, typically in 5-8 milliseconds. This is within the timing tolerance of even a fairly demanding musician or animator.

The second refinement is to tenure all surviving objects when the number of survivors exceeds a certain threshold, a simplified version of Ungar and Jackson's feedback-mediated tenuring policy [UnJa88]. Tenuring is done as follows. After the incremental garbage collection and compaction, the boundary between the old and new object spaces is moved up to encompass all surviving new objects, as if a full garbage collection had just been done. This "clears the decks" so that future incremental compactions have fewer objects to process. Although in theory this approach could hasten the onset of the next full garbage collection, such full collections are rare in practice. In any case, Squeak's relatively lean image makes full garbage collections less daunting than they might be in a larger system; a full collection typically takes only 250 milliseconds in Squeak. We have been using this storage manager in support of real-time graphics and music for over a year now with extremely satisfactory results. In our experience, 10 milliseconds is an important threshold for latency in interactive systems, because most of the other critical functions such as mouse polling, sound buffer output and display refresh take place at a commensurate rate.

*
Squeak's C connection:

"Smalltalk to C Translation

We have alluded to the Squeak philosophy of writing everything in Smalltalk. While the Blue Book contains a Smalltalk description of the virtual machine that was actually executed at least once to verify its accuracy, this description was meant to be used only as an explanatory model, not as the source code of a working implementation. In contrast, we needed source code that could be translated into C to produce a reliable and efficient virtual machine.

Our bootstrapping strategy also depended on being able to debug the Smalltalk code for the Squeak virtual machine by running it under an existing Smalltalk implementation, and this approach was highly successful. Being able to use the powerful tools of the Smalltalk environment saved us weeks of tedious debugging with a C debugger. However, useful as it is for debugging, the Squeak virtual machine running on top of Smalltalk is orders of magnitude too slow for useful work: running in Squeak itself, the Smalltalk version of the Squeak virtual machine is roughly 450 times slower than the C version. Even running in the fastest available commercial Smalltalk, the Squeak virtual machine running in Smalltalk would still be sluggish.

The key to both practical performance and portability is to translate the Smalltalk description of the virtual machine into C. To be able to do this translation without having to emulate all of Smalltalk in the C runtime system, the virtual machine was written in a subset of Smalltalk that maps directly onto C constructs. This subset excludes blocks (except to describe a few control structures), message sending, and even objects! Methods of the interpreter classes are mapped to C functions and instance variables are mapped to global variables. For byte code and primitive dispatches, the special message dispatchOn:in: is mapped to a C switch statement. (When running in Smalltalk, this construct works by perform:-ing the message selector at the specified index in a case array; since a method invocation is much less efficient than a branch operation, this dispatch is one of the main reasons that the interpreter runs so much faster when translated to C).

The translator first translates Smalltalk into parse trees, then uses a simple table-lookup scheme to generate C code from these parse trees. There are only 42 transformation rules, as shown in Table 3. Four of these are for integer operations that more closely match those of the underlying hardware, such as unsigned shifts, and the last three are macros for operations so heavily used that they should always be inlined. All translated code accesses memory through six C macros that read and write individual bytes, 4-byte words, and 8-byte floats. In the early stages of development, every such reference was checked against the bounds of object memory.

Table 3: Operations of primitive Smalltalk

& | and: or: not

+ - * // \\ min: max:

bitAnd: bitOr: bitXor: bitShift:

< <= = > >= ~= ==

isNil notNil

whileTrue: whileFalse: to:do: to:by:do:

ifTrue: ifFalse: ifTrue:ifFalse: ifFalse:ifTrue:

at: at:put:

<< >> bitInvert32 preIncrement integerValueOf:

integerObjectOf: isIntegerObject:

Our first translator yielded a two orders of magnitude speedup relative to the Smalltalk simulation, producing a system that was immediately usable. However, one further refinement to the translator yielded a significant additional speedup: inlining. Inlining allows the source code of the virtual machine to be factored into many small, precisely defined methods&emdash;thus increasing code-sharing and simplifying debugging&emdash;without paying the penalty in extra procedure calls. Inlining is also used to move the byte code service routines into the interpreter byte code dispatch loop, which both reduces byte code dispatch overhead and allows the most critical VM state to be kept in fast, register-based local variables. All told, inlining increases VM performance by a factor of 3.4 while increasing the overall code size of the virtual machine by only 13%."

*
more from the same paper:

"Conclusions

As far as we know, Squeak is the first practical Smalltalk system written in itself that is complete and self-supporting. Squeak runs the Smalltalk code describing its own virtual machine fast enough for debugging purposes: although it requires some patience, one can actually interact with menus and windows in this mode. This is no mean feat, considering that every memory reference in the inner loop of BitBlt is running in Smalltalk.

To achieve useful levels of performance, the Smalltalk code of the virtual machine is translated into C, yielding a speedup of approximately 450. Part of this performance gain, a factor of 3.4, can be attributed to the inlining of function calls in the translation process. The translator can also be used to generate primitive methods for computationally intensive inner loops that manipulate fundamental data types of the machine such as bytes, integers, floats, and arrays of these types.

The Squeak virtual machine, since its source code is publicly available, serves as an updated reference implementation for Smalltalk-80. This is especially valuable now that the classic Blue and Green Books [Gold83] [Kras83] are out of print. A number of design choices made in the Blue Book that were appropriate for the slower speed and limited address space of the computer systems of the early 1980's have been revisited, especially those relating to object memory and storage reclamation. Squeak also updates the multimedia components of this reference system by adding color support and image transformation capabilities to BitBlt and by including sound output. While Squeak is not the first Smalltalk to use modern storage management or to support multimedia, it makes a valuable contribution by delivering these capabilities in a small one-language package that is freely available, and that runs identically on all platforms.

Final Reflections

While we considered using Java for our project, we still feel that Smalltalk offers a better environment for research and development. At a time when the world is moving toward native host widgets, we still feel that there is power and inspiration in having all of the code for every aspect of computation and display be immediately accessible, changeable, and identical across platforms. Finally, when most development environments fill 100 megabytes of disk space or more, Squeak is a portable, malleable, full-service computing environment, including browsing, split-second recompilation, and source debugging tools, all in a 1-megabyte footprint. Though many of its strengths are rooted in the past, Squeak is suited to the intimate computing potential of PDAs and the Internet, and our work is, now more than ever, inspired by the future."

*
CONSIDER: talking more about iteration might not be such a bad idea...

*
CONSIDER: finding out the skinny on public/private would be great, too;

*
Did I say this? It's an interesting deliberate design philosophy:

*
"Syntax [is INTENDED to...!] mimic natural language"

*
"Objects are subjects" [an Object is like the subject of a sentence]

*
"Verbs are messages" [the Message is like the verb within a sentence]

*
"Arguments are complements" [they complement the subject? arguments?]

*
"Expression ends with a period." [...like a sentence!]

*
"Variables and Objects"

*
"Dynamically typed"

"object := 15.

 object := 'some string'.

 object := 1 to: 10.

 object class

 object class superclass"

[I'd like some elaboration on this...!]

well, sure --- the type of a name (variable) is determined at run time --- when something is assigned to it. It can change types at the next assignment, it appears!

*
There's a concept of INFINITY here...?

Float infinity"

[...and this? Infinity!]

*
Of course, the Morphics graphics architecture MIGHT be an interesting topic --- or would it be? It really isn't *Smalltalk*, right?

[from Squeak welcome to message:

This release of Squeak uses the Morphic graphics architecture.]

 morph := Morph new openInWorld. [pretty cool --- graphical stuff...]

 morph position: 110@40.

 morph extent: 250@80.

 morph color: (Color r: 1 g: 0 b: 0).

 morph color: (Color r:1 g:0 b:0 alpha: 0.6).

 morph delete.

*
More about classes being objects? "Classes are Objects Too"

*
Remember? EVERYTHING in Smalltalk is an object...

*
5 class inspect.
[get a little window w/ info about the class of object 5...!]

[classes must respond to an inspect message...!]

*
String allInstances.

*
"A class is instance of another class, its metaclass"

5 class class

*
"Class methods are methods executed on classes"

Date today.
[we saw that one earlier!]

*
"Cascade"

*
"Sending multiple messages to the same object"

|watch|

[I could paste all this into Workspace,

watch := WatchMorph new.

highlight, and printIt!]

watch position: 40@50.

watch extent: 100@100.

watch color: Color yellow.

watch openInWorld.

WatchMorph new

position: 620@50;
[remember: ; means send next message to PREVIOUS

extent: 100@100;

receiving object. new instance of WatchMorph

color: Color yellow;

should receive position, extent, color, and

openInWorld.

openInWorld messages]

[see the difference, above? could just send the "anonymous" object all those messages --- didn't HAVE to name it to send it several in a row;]

*
"Powerful Environment"

*
"Incremental compilation" [?! is that the same thing as interpretation, or something different??]

*
"Compiler accessible in any pane"

*
"Complete environment written in itself"

*
"Excellent debugger"

*
[got any demos or expansion about any of this?!]

loop example?

*
an interesting example from the slide:

Transcript show: 30.

Transcript cr.

Transcript show: 30; cr.
"cascade!"

Transcript show: 30 factorial; cr.

30 to: 40 do:

[:i| Transcript show: i factorial; cr].

Transcript clear.

*
30 to: 40 do: [:i| Transcript show: i factorial; cr].

to:do: message sent to object 30 with argument object 40 and argument that block!

I think it causes the block to be executed with each object 30 to 40 as i...?

*
NOW we're cookin' with gas, maybe?

*
"Inspector and Explorer"

*
"Getting access to the objects"

*
"Accessing/modifying state"

*
"Sending messages to inspected object"

100 inspect or alt-i

[100 inspect works --- alt-i must be for something

besides a Mac... 8-)]

*
"Method Finder"

*
"What is the method that works?"

*
"To find a method given:
an object, some args, and a result"

*
"Example: find all the methods that return true when sent to the string 'abc' with *bc as arguments"

'abc' . '*bc' . true

*
OK --- is this a tool, or a way of typing something...? is . a binaryOp?

It's a tool --- and is available from the same menu browsers and transcripts are, but a little further down (first item in next menu subsection)

in top left pane --- 2.2.4 (return) didn't work, but 2. 2. 4 (return) did!

(that is --- need a SPACE after the periods!)

This is potentially useful...!

*
"Literal Objects"

*
"Created at compile-time by the parser"

*
[most of these we know --- BUT the class names may be of interest?]

12

Integer

3.14156

Float

$a

Character
[THAT'S what $ is used for...!]

'Hello World'
String

#show:

Symbol

#(12 'abc' $b)
Array

{1 + 2 . 3 + 4}
Dynamic Array
[printIt shows this as #(3 7) ---

the array resulting from the message calls

within?]

*
"Infinite Number Precision" ?!?!?!?!? [David claims its possible...!]

*
(1/3) + (2/3)

*
1000 factorial / 999 factorial

*
1 class

1 class maxVal

1 class maxVal + 1

*
Float infinity

Float infinity + 1

Float infinity / Float infinity

*
"Control Structures"

*
"Sequence, Condition, Iteration"

*
...but they're not special syntax; they are methods of classes that lead to the desired structure...?

*
"Sequence"

*
Well, I can highlight a sequence of statements in the transcript and select DoIt to run them in sequence...

Transcript show: 'Hello, world!'.

Transcript cr.

Transcript show: 'Hello world, again!'.

Transcript show: 3 + 4; cr; cr.

Yup. definitely works. [why did Mr. Meadlin seem to be saying that it didn't? I must have misunderstood...] [ah --- only works if PERIOD used as separator...!]

*
And, the statements (expressions?) within a method seem to be done in sequence, too...

*
"Conditions" - we've seen this already, too;

*
ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue methods of class Boolean;

*
7 < 12 ifTrue: [Transcript show: '7 is less than 12'; cr].

*
[skipping the other examples; they SHOULD be pretty clear on this, at this point.]

*
"Booleans"

*
Perhaps useful clarification?

*
"Boolean is abstract" [So, Smalltalk has a concept of abstract class --- isn't that one for which you can have no instances, but can create subclasses of?]

*
"True and False are its subclasses"

*
"true instance of True"

*
"false instance of False"

*
"or, not, and are polymorphically implemented on True and False"

[OK, what exactly does THAT mean?]

*
"Block Closures (I)"

*
"Represent piece of code"

*
"Delay expressions"

b1 := [Beeper beep].

b1 value.

[NOW you hear a sound...]

fct := [:x| x + 2].

fct value: 3.

fct value: 100.

*
"Block Closures (ii)"

*
b1 := [:name|

 (SampledSound soundNamed: name) play].

b1 value: #croak.

b1 value: #scratch.

b1 value: #chirp.

b1 value: #splash.

b1 value: #coyote.

b1 value: #silence.

*
"Iterations"

*
hey, we've seen this >> notation before --- didn't we? last Wednesday?

Does Blah>>Blech: mean the Blech: method of class Blah?

BlockContext>>whileTrue:

BlockContext>>whileFalse:

Integer>>timeRepeat:

Integer>>to:do:

Collection>>collect:

Collection>>do:
Collection>>detect:

Collection>>inject:into:

Collection>>reject:

Collection>>select:

*
"whileTrue:"
-- example of WhileTrue method of class BlockContext?

| f n |

f := 1.

n := 4.

[n>1]

whileTrue: [f := f*n.

 n := n-1].

f.

whileTrue: is sent to true or false, eh? (evaluate block [n>1])

if sent to true, I bet block argument is evaluated; and receiving block evaluateds itself again?

Blank --- I understand that it repeats, but not how the message sending makes it repeat...!

*
"High-Level Iterators"

*
...!

#(1 2 3 4) do: [:x| Transcript show: x printString; cr]
"straightforward..."

(reading-wise, if not

message-wise...)

#(1 2 3 4) collect: [:x| x odd]
"slide was wrong --- no isOdd!]

"collect collects results of each call into an arrray

object?!"

#(true false true false)

#(1 2 3 4) select: [:x| x odd]
"THIS one is #(1 3)! "

#(1 2 3 4) reject: [:x| x odd]
"this is: #(2 4) "

#(1 2 3 4) detect: [:x| x odd]
"has value 1 --- does it detect 1st "true" element?"

*
"Collection Classes"

*
"Highly polymorphic libraries"

*
"Inspired Java 1.1"

*
"More than 120 subclasses of Collection"...!

*
"Class libraries"

*
"Really rich"

*
"per default around 1500 classes"

*
Object withAllSubclasses size / 2

*
"Multimedia, network..."

*
"A lot more on SqueakMap (catalog of packages)"

*
"Development Tools"

*
"Various Code Browsers"

*
"Refactoring Browser (influenced Eclipse)" ...!

*
"SmallLint (code analysis)"

*
"SUnit (Unit Framework mother)"

*
"Monticello (CVS-like versioning)"

*
"SqueakSource (Squeak SourceForge)"

SourceForge --- a site designed for GNU free-type software; a repository with version control; [from David, and that sounded vaguely "right" when he said it...]

*
"Smalltalk Drawbacks"

*
"Different Dialects"

*
"Different UI's" --- [user interfaces?]

*
"Slight difference but core the same"

*
"Uniform language" - [that's a disadvantage?]

*
"Not conventional syntax" --- [oh; but I guess that it...]

*
"Not mainstream"

*
"Conclusion"

*
"Uniform and simple model"

*
"Uniform syntax"

*
"Dynamic community"

*
"Help to focus on design and concepts"

*
and a number of links...

and "To Learn Smalltalk"...

and mailing lists...

and that's it. for Source #2, "A Gentle Introduction to Smalltalk"

*
"We will now look at a summary of the completed code for classes Monster and CookieMonster."

Class: Monster

Superclass: Object

Category: Sesame Street

Instance variables: colour tummy

"This ABSTRACT class implements some generic structure and behaviour common to different types of monsters."

actions

eat: someItem.

 self tummy add: someItem.

 ^self

queries

isEmpty

 ^ self tummy isNil

access

colour

 ^ colour

colour: aSymbol

 colour := aSymbol.

 ^self

tummy

 ^ tummy

tummy: aCollection

 tummy := aCollection.

 ^self

initialization

initialize

 self colour: #green.

 self tummy: Bag new.

 ^self

"There is only a single class method and no class variables."

creation

new

 ^ super new initialize

*
"Cookie monsters inherit from Monster, but add more specific behaviour of their own."

Class: CookieMonster

Superclass: Monster

Category: Sesame Street

Instance variables: state hunger

private

askForCookie

 ^ FillInTheBlank request: 'Give me cookie !!! (please)'

complainAbout: anItem

 Transcript show: 'No want ', anItem printString.

 Transcript cr.

 self colour: #red.

 ^self

isCookie: anItem

" | serves as the OR operator"

 ^ ((anItem = 'cookie') | (anItem = #cookie))

actions

eat: aCookie
"overloaded eat:!"

 super eat: aCookie.

 self colour: #green "why...?"

 ^self

nag

 | item |

 [self isAwake]

 whileTrue:

 [item := self askForCookie.

 (self isCookie: item)

 ifTrue: [self eat: item]

 ifFalse: [self complainAbout: item].

 (self isFull) ifTrue: [self sleep]]

 ^self "?"

sleep

 self state: #asleep.

 self hunger: 0.

 ^self

wakeUp

 self tummy: Bag new.

self state: #awake.

self hunger: (Random new next * 13).

"Cookie Monsters are superstitious and never eat more than

13 cookies in one go !"

self nag

^self "?"

queries

isAsleep

 ^ state = #asleep

isAwake

 ^ self isAsleep not

isFull

 self isEmpty

 ifFalse: [^ self tummy size >= self hunger] ifTrue: [^false]

access

hunger

 ^ hunger

hunger: anIntegerNumberOfCookies

 hunger := anIntegerNumberOfCookies.

 ^self "?"

state

 ^ state

state: aSymbol

 state := aSymbol.

 ^self

initialization

initialize

 self state: #asleep.

 self hunger: nil.

 super initialize

 ^self "?"

To ensure proper initialization Monster's creation class method is also overridden.

creation

new

 ^ super new initialize

*
"You will have noted that most messages are rather short.

In fact, a large proportion of them consists of a single line of code, returning (^) or assigning (:=) some value.

This is typical for object-oriented programs and Smalltalk code in particular, since all valid patterns of access to variables must be explicitely defined.

In the interest of reliability many state variables should not be accessible at all from outside of an object.

Smalltalk's approach of requiring explicit method definitions for any access to variables is facilitated by its programming environment.

Since the browser allows rapid definition of such selectors with only a few mouse clicks, modifying an already existing method, this is not particularly bothersome to do - and it pays in terms of program reliability.

In a traditional listing such methods tend to clutter clutter the code, but browsers reduce the need for such tedious documentation."

*
"Note that choosing "fileOut" fom the yellow button menu attached to the class category pane of a browser saves all such class definitions in the selected category as a text file (in the current directory), which can be "read back" into Squeak (i.e. each definition is recompiled) from a file list."

