CS 335 – S05

p. 20
Sharon M. Tuttle

CS 335 – Week 10, Lecture 1 – Spring 2005

*
Smalltalk and OOP, Part 3 of 4

*
HERE PLEASE

(need Assignment #7 by tonight!)

in WEEK 2 of Programming Project for Squeak/Smalltalk

need to post SCHEME Programming Project in ONE WEEK

*
NOTE: be flexible about Squeak version differences; the assignments/programming projects may occasionally have small version differences (and wrong button-colors, as already noted last week); [what's an assertive way of saying this? 8-)]

*
be sure to cover --- how do you make something a subclass

I think should probably be sure to cover ASSIGNMENT in Scheme, too

What else is particularly important?

*
What else is in the comes-with-Squeak tutorial?

"A Gentle Introduction to Smalltalk" is reachable from clicking on the little window with the 6 little ovals in it (the Worlds of Squeak), and selecting the top-center circle (with the heading "Smalltalk")

*
OK --- what does this ADD to what we already know/have covered?

*
"Impacts"

*
"First object-oriented language"

*
"Smalltalk-80

*
bitmap

*
mouse

*
windowing system

*
full environment

*
incremental compilation [not interpreted...?]

*
byte-code and garbage collector"

*
"Smalltalk vs. VW/Squeak/..."

*
"Smalltalk is a language"

*
"Smalltalk is a living system"

*
"Smalltalk is a philosophy of coding"

*
"Squeak is a Smalltalk"

*
"Squeak is a multi-media oriented Smalltalk"

*
OK, that DIDN'T help as much as I'd hoped...!

*
"Syntax on a Postcard" [to review last Wednesday's material? See if agrees with/adds anything?]

exampleWithNumber: x

"A method that illustrates every part of Smalltalk method syntax except primitives. It has unary, binary, and keyword messages, declared arguments and temporaries, accesses a global variable(but not an instance variable), uses literals (array, character, symbol, string, integer, float), uses the pseudo variables true, false, nil, self, and super, and has sequence, assignment, return, and cascade. It has both zero argument and one argument blocks."

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a 'a' 1 1.0)

 do: [:each| Transcript show: (each class name); show (each printString); cr].

^ x < y

*
"Smalltalk Object Model"

*
"Everything is an object" --- we knew that! 8-)

*
"Every object is an instance of a class"

*
"Methods are public" - no private method option!

*
"Attributes are protected" - so MUST use methods to access?

*
"Single inheritance" - NOT multiple inheritance;

*
"Closures"

*
"Six Pseudo-Variables"

*
"Constants:"

*
"true, false" - singleton instances of classes True, False, another reference noted, remember;

*
"nil (default value of uninitialized attributes)"

*
"Dynamic:"
[dynamic what??]

*
"current receiver: self and super"

*
uh oh --- there's that idea again! I was hoping that the "Reading Smalltalk" source was wrong about this;

Is super really just another name for self --- the object which has received a message, and so the object responsible for knowing how top handle that kind of message ---

...but with the additional bit that it means to call the superclass's version of this method...?

NOT SURE I've got it, yet;

*
"thisContext (runtime stack)"

*
"Pseudo-Variables: cannot be assigned"

*
"Sending Messages"

*
As we know, "Any computation is performed by sending messages"

*
As we've implied, "We send messages to objects"

*
"Methods with the same name are executed"

*
"<receiver> method-name <arg>"

"album play

 album playFromTrack: 1

 album playFromTrack: 2 to: 6"

*
"Syntax [is INTENDED to...!] mimic natural language"

*
"Objects are subjects" [an Object is like the subject of a sentence]

*
"Verbs are messages" [the Message is like the verb within a sentence]

*
"Arguments are complements" [they complement the subject? arguments?]

*
"Expression ends with a period." [...like a sentence!]

*
"Variables and Objects"

*
"Dynamically typed"

"object := 15.

 object := 'some string'.

 object := 1 to: 10.

 object class

 object class superclass"

[I'd like some elaboration on this...!]

*
"Three kinds of messages" [which we knew...]

*
"Unary: 'squeal' reversed"

*
"Binary: 1+2"

<--- look! Here, again, binaryOp...

*
"Keyword-based: Color r: 0 g: 1 b: 0"

*
And, we also have already discussed the order of precedence in Smalltalk:

"Determine the execution order"

*
"Unary > Binary > Keyword-based"

*
(and left-to-right within a category...)

*
"Unary Messages"

*
only of interest in seeing some provided unary messages --- we've got the basics of these down pretty pat at this point...! (or SHOULD...)

WHAT SHOULD BE DONE: TRY these LIVE (the BOLDED ones --- I'll bold those that are potentially INTERESTING!)

*
"0.7 sin

 100 log

 'squeak' reversed

 'squeak' capitalized

 'squeak' asUppercase

 Float pi

[3.141... to 15 digits]

 Float infinity"

[...and this? Infinity!]

*
"Binary Messages"

*
Likewise, I suspect this is only of interest in seeing some provided binary messages; but could there be some surprises...?

*
"5 + 8

bool1 := true "not a message expr"

 5 - 8

bool2 := false "not a message expr"

 5 * 8

 5 / 8

bool1 & bool2

 5 @ 8
 [a point!]
bool1 | bool2

 (5 @ 8) class

 5 < 8

'Hel' , 'lo'

 (5 < 8) class

 5 > 8

today := Date today

 5 <= 8

tomorrow := today next

 5 >= 8

today < tomorrow"

*
Is the implication here that := is NOT a binaryOp? That assignment is NOT a message sent to the LHS object?

Class of the "expression" is what's assigned --- that's C-like, isn't it?

*
the date-class implied looks interesting; so does string concatenation.

They "work" just fine, too.

*
Wonder what the @ operation does? ! that's a POINT! (coordinate!)

*
"Keyword-based Messages"

*
same thing --- we should have the basics here. But seeing some of the provided examples should be interesting;

*
"2 raisedTo: 10.

Color r: 0 g: 0 b: 1

 2 raisedTo: 10 modulo: 1000.
Color: r: 0 g: 0 b: 1 alpha: 0.6

(Color: r: 0 g: 0 b: 1 alpha: 0.6) class.

[from Squeak welcome to message:

This release of Squeak uses the Morphic graphics architecture.]

 morph := Morph new openInWorld. [pretty cool --- graphical stuff...]

 morph position: 110@40.

 morph extent: 250@80.

 morph color: (Color r: 1 g: 0 b: 0).

 morph color: (Color r:1 g:0 b:0 alpha: 0.6).

 morph delete.

 array := #(1 2 3 4 5).

[now, THIS is something new! how you set up an

array]

 array at: 1.

[1-based arrays --- NOT 0-based!]

 array at: 1 put: 'something'.
[...NOT limited to elements of a single type;]

 array at: 1.

*
"Classes are Objects Too"

*
Remember? EVERYTHING in Smalltalk is an object...

*
5 class inspect.
[get a little window w/ info about the class of object 5...!]

[classes must respond to an inspect message...!]

*
String allInstances.

*
"A class is instance of another class, its metaclass"

5 class class

*
"Class methods are methods executed on classes"

Date today.
[we saw that one earlier!]

*
"Chaining Messages"

*
"Messages with same priority are executed from left to right"

[we know this already; covered earlier. Not copying over these examples]

*
"Cascade"

*
"Sending multiple messages to the same object"

|watch|

[I could paste all this into Workspace,

watch := WatchMorph new.

highlight, and printIt!]

watch position: 40@50.

watch extent: 100@100.

watch color: Color yellow.

watch openInWorld.

WatchMorph new

position: 620@50;
[remember: ; means send next message to PREVIOUS

extent: 100@100;

receiving object. new instance of WatchMorph

color: Color yellow;

should receive position, extent, color, and

openInWorld.

openInWorld messages]

[see the difference, above? could just send the "anonymous" object all those messages --- didn't HAVE to name it to send it several in a row;]

*
"Priority at Work" -

*
We know this, I think; l-to-right if same level, and only 3 levels (unary, binaryOp, keyword)

*
Check out this example, though:

(SampledSound soundNamed: #croak) play.

*
"Powerful Environment"

*
"Incremental compilation" [?! is that the same thing as interpretation, or something different??]

*
"Compiler accessible in any pane"

*
"Complete environment written in itself"

*
"Excellent debugger"

*
[got any demos or expansion about any of this?!]

*
"Basic Tools"

*
"Workspace, Transcript, Explorer, System Browser, Method finder, Message names"

*
"Workspace"

*
"Place to execute expressions"

*
"Do it"

*
"Execute an expression"

*
"Print it"

*
"Execute an expression and print its result"

*
"Transcript"

*
"kind of std-output"

*
an interesting example from the slide:

Transcript show: 30.

Transcript cr.

Transcript show: 30; cr.
"cascade!"

Transcript show: 30 factorial; cr.

30 to: 40 do:

[:i| Transcript show: i factorial; cr].

Transcript clear.

*
30 to: 40 do: [:i| Transcript show: i factorial; cr].

to:do: message sent to object 30 with argument object 40 and argument that block!

I think it causes the block to be executed with each object 30 to 40 as i...?

*
NOW we're cookin' with gas, maybe?

*
"Inspector and Explorer"

*
"Getting access to the objects"

*
"Accessing/modifying state"

*
"Sending messages to inspected object"

100 inspect or alt-i

[100 inspect works --- alt-i must be for something

besides a Mac... 8-)]

*
"System Browser"

*
"To browse all the classes"

*
"Edit methods"

*
"5 panes:

*
Class categories (class folders)

*
Classes

*
Method categories

*
Method

*
Method body"

*
"Method Finder"

*
"What is the method that works?"

*
"To find a method given:
an object, some args, and a result"

*
"Example: find all the methods that return true when sent to the string 'abc' with *bc as arguments"

'abc' . '*bc' . true

*
OK --- is this a tool, or a way of typing something...? is . a binaryOp?

It's a tool --- and is available from the same menu browsers and transcripts are, but a little further down (first item in next menu subsection)

in top left pane --- 2.2.4 (return) didn't work, but 2. 2. 4 (return) did!

(that is --- need a SPACE after the periods!)

This is potentially useful...!

*
"Literal Objects"

*
"Created at compile-time by the parser"

*
[most of these we know --- BUT the class names may be of interest?]

12

Integer

3.14156

Float

$a

Character
[THAT'S what $ is used for...!]

'Hello World'
String

#show:

Symbol

#(12 'abc' $b)
Array

{1 + 2 . 3 + 4}
Dynamic Array
[printIt shows this as #(3 7) ---

the array resulting from the message calls

within?]

*
"Infinite Number Precision" ?!?!?!?!? [David claims its possible...!]

*
(1/3) + (2/3)

*
1000 factorial / 999 factorial

*
1 class

1 class maxVal

1 class maxVal + 1

*
Float infinity

Float infinity + 1

Float infinity / Float infinity

*
"Control Structures"

*
"Sequence, Condition, Iteration"

*
...but they're not special syntax; they are methods of classes that lead to the desired structure...?

*
"Sequence"

*
Well, I can highlight a sequence of statements in the transcript and select DoIt to run them in sequence...

Transcript show: 'Hello, world!'.

Transcript cr.

Transcript show: 'Hello world, again!'.

Transcript show: 3 + 4; cr; cr.

Yup. definitely works. [why did Mr. Meadlin seem to be saying that it didn't? I must have misunderstood...]

*
And, the statements (expressions?) within a method seem to be done in sequence, too...

*
"Conditions" - we've seen this already, too;

*
ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue methods of class Boolean;

*
7 < 12 ifTrue: [Transcript show: '7 is less than 12'; cr].

*
[skipping the other examples; they SHOULD be pretty clear on this, at this point.]

*
"Booleans"

*
Perhaps useful clarification?

*
"Boolean is abstract" [So, Smalltalk has a concept of abstract class --- isn't that one for which you can have no instances, but can create subclasses of?]

*
"True and False are its subclasses"

*
"true instance of True"

*
"false instance of False"

*
"or, not, and are polymorphically implemented on True and False"

[OK, what exactly does THAT mean?]

*
"Block Closures (I)"

*
"Represent piece of code"

*
"Delay expressions"

b1 := [Beeper beep].

b1 value.

[NOW you hear a sound...]

fct := [:x| x + 2].

fct value: 3.

fct value: 100.

*
"Block Closures (ii)"

*
b1 := [:name|

 (SampledSound soundNamed: name) play].

b1 value: #croak.

b1 value: #scratch.

b1 value: #chirp.

b1 value: #splash.

b1 value: #coyote.

b1 value: #silence.

*
"Iterations"

*
hey, we've seen this >> notation before --- didn't we? last Wednesday?

Does Blah>>Blech: mean the Blech: method of class Blah?

BlockContext>>whileTrue:

BlockContext>>whileFalse:

Integer>>timeRepeat:

Integer>>to:do:

Collection>>collect:

Collection>>do:
Collection>>detect:

Collection>>inject:into:

Collection>>reject:

Collection>>select:

*
"whileTrue:"
-- example of WhileTrue method of class BlockContext?

| f n |

f := 1.

n := 4.

[n>1]

whileTrue: [f := f*n.

 n := n-1].

f.

whileTrue: is sent to true or false, eh? (evaluate block [n>1])

if sent to true, I bet block argument is evaluated; and receiving block evaluateds itself again?

Blank --- I understand that it repeats, but not how the message sending makes it repeat...!

*
"High-Level Iterators"

*
...!

#(1 2 3 4) do: [:x| Transcript show: x printString; cr]
"straightforward..."

(reading-wise, if not

message-wise...)

#(1 2 3 4) collect: [:x| x odd]
"slide was wrong --- no isOdd!]

"collect collects results of each call into an arrray

object?!"

#(true false true false)

#(1 2 3 4) select: [:x| x odd]
"THIS one is #(1 3)! "

#(1 2 3 4) reject: [:x| x odd]
"this is: #(2 4) "

#(1 2 3 4) detect: [:x| x odd]
"has value 1 --- does it detect 1st "true" element?"

*
"Collection Classes"

*
"Highly polymorphic libraries"

*
"Inspired Java 1.1"

*
"More than 120 subclasses of Collection"...!

*
"Class libraries"

*
"Really rich"

*
"per default around 1500 classes"

*
Object withAllSubclasses size / 2

*
"Multimedia, network..."

*
"A lot more on SqueakMap (catalog of packages)"

*
"Development Tools"

*
"Various Code Browsers"

*
"Refactoring Browser (influenced Eclipse)" ...!

*
"SmallLint (code analysis)"

*
"SUnit (Unit Framework mother)"

*
"Monticello (CVS-like versioning)"

*
"SqueakSource (Squeak SourceForge)"

SourceForge --- a site designed for GNU free-type software; a repository with version control; [from David, and that sounded vaguely "right" when he said it...]

*
"Smalltalk Drawbacks"

*
"Different Dialects"

*
"Different UI's" --- [user interfaces?]

*
"Slight difference but core the same"

*
"Uniform language" - [that's a disadvantage?]

*
"Not conventional syntax" --- [oh; but I guess that it...]

*
"Not mainstream"

*
"Conclusion"

*
"Uniform and simple model"

*
"Uniform syntax"

*
"Dynamic community"

*
"Help to focus on design and concepts"

*
and a number of links...

and "To Learn Smalltalk"...

and mailing lists...

and that's it. for Source #2, "A Gentle Introduction to Smalltalk"

*
BUT --- I need an intro to DEVELOPING CLASSES and SUBCLASSES --- in Smalltalk AND Squeak!

*
Does this help? (from the Squeak welcome message:)

"Further Documentation

The Squeak Swiki at Georgia Tech is currently the primary source of online documentation and community information regarding Squeak. It contains a FAQ, tutorials, and much more. Visit it at:

http://minnow.cc.gatech.edu/squeak"

*
digging around on the Squeak Swiki, I did find:

http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/smalltalk1.html

...which perhaps DOES have some info about HOW TO BUILD A $#^&$%^#& CLASS?! (and maybe subclasses...?)

*
"Various categories of browsers play a very important role in Smalltalk."

*
"System Browsers are used to access definitions for all the classes and methods - both system-defined and user-defined - that Smalltalk knows about."

*
"They are also needed to define new classes and methods."

*
"Any number of system browsers may be opened on relevant collections of classes, and programmers will frequently switch between them to view, change, cut and copy code during development."

*
[don't we know this?]

"System browsers inhabit a window with five panes."

*
"The four upper ones are used for navigating a "path" through a space of definitions, while the lower one views the selected definition itself."

*
"To provide some structure to the large number of classes which can be found in a typical Smalltalk system all classes are grouped into categories."

*
"First we must enter a class category, which causes a scrollable list of classes categorized under that label to appear in the pane to the right."

*
"Choosing a class from this list narrows the browser's focus to all of its methods, which are now accessible for inspection."

*
"At this stage we must also decide whether we want to view class or instance methods."

*
"Methods are categorized in the same way as classes, and we must now choose a category."

*
"This finally returns a list of methods, which may now be selected - after which the relevant code is shown in the lower pane."

*
"Each of the five panes has its own "yellow" button menu, offering various options...."

*
"The options contained in the menu for the bottom pane could now be applied to all or any selected part of that code."

*
"From this discussion it should be apparent that browsers offer a very powerful tool for viewing and accessing code, "

*
..."since they make all of the Smalltalk system uniformly accessible for inspection and modification."

*
"In accordance with the object-oriented philosophy each class functions as an interpreter for a command language of its own, whose functionality is defined through its message protocol; i.e. the set of all messages an object can respond to."

*
"Let us now step through the procedure by which one defines a new application." [application...?]

*
"As our domain we have chosen a small segment of Sesame Street, a well known urban neighbourhood populated by a wide range of rather exotic creatures."

*
"To keep things simple we will concentrate on two classes of creatures only: Monsters and CookieMonsters."

[note, again, how the class names are written as Java does --- or Java accepted style is borrowed from Smalltalk's accepted style, perhaps: class name starts with a capital letter, each "word" in the class name starts with a capital letter. Thus, CookieMonster]

*
"Monster is used as an abstract class, in order to demonstrate subclassing."

*
"It therefore describes a number of aspects common to monsters of all walks of life."

 *
"CookieMonsters are just a special case, with certain peculiarities of their own."

*
Now, to encode this, we need to know what specifications are desired...

*
For our purposes, "monsters are characterized by a colour and a tummy" [no, I did NOT make up this example...!]

*
"Since monsters come in a variety of colours, this information is stored as a symbol, and

*
"at creation monsters are equipped with an empty tummy instantiated to a predefined data structure called Bag"

*
"Apart from access to these two instance variables, monsters possess protocol to eat and answer whether their tummy is empty."

*
"The relevant instance methods are categorized as initialization, access, queries and actions."

[a LITTLE different from accessors and modifiers! But these seem pretty straightforward...]

*
"Basically we view cookie monsters as entities who continually nag for cookies, which are the only food they ever consent to eat."

*
"Once awakened they may only be silenced once their immediate hunger has been stilled, after which they will fall asleep until some foolish user wakes them again."

*
So, CookieMonsters specialize the basic Monster "protocol further."

*
" No additional class variables are defined,"

*
"...but two new instance variables, state and hunger, are provided."

*
"A CookieMonster's state will be either #awake or #asleep, and"

*
"...its hunger determined at random at the time it wakes up."

*
"We [need to] provide a class method for creating such beasts,

together with instance methods for initialization, queries, access, and actions"

OK, for seasoned OO programmers (with ADT experience!] like y'all, you should already KNOW that a class needs such methods and capabilities...! But, you'd like to know/see how they're done in Smalltalk.

*
"CookieMonsters eat differently from generic monsters, i.e. they are more choosy about their food."

*
"The generic monster's method for eating is therefore overridden by a new implementation for the eat: method."

*
"As they are not particularly strong they must also know how to solicit food by begging, and the "nag" method offers this functionality."

*
"Finally, there are methods for testing items prior to digestion, and for describing the particular way in which solicitation takes place."

*
"CookieMonsters view this information as proprietary, and it is therefore labeled as private."

*
huh --- I thought that all methods in Smalltalk were public...?

 *
"To implement this scenario in Squeak we must:"

*
"first make a new class category, SesameStreet,"

*
"add the Monster and CookieMonster classes, and then"

*
"define and test all the methods."

*
"All these actions can be performed from within a browser,

while workspaces and a new type of view, called inspector, may be employed for testing purposes."

*
so, creating a new [class?] category:

*
to create a new CATEGORY: option-click in top-left browser window, select "add item" option; and accept;

*
In this way, I CAN add a new category "Sesame Street".

*
"Classes can be defined once the new category has been added to the system. "

*
And, how can you add new classes to a category?

*
It would NOT shock me if there were multiple routes to this...!

*
BUT: one way: when you select the class category in the first window....

*
"For this purpose the lower browser pane will show a template for class definition, which the user may fill with detail."

[yup, I see that;]

Object subclass: #NameOfSubclass

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Sesame Street'

*
notice how the category is filled in;

*
you don't HAVE to fill everything in; we won't be getting to poolDictionaries today, for example.

*
Like Java, note that there is an Object superclass that all user-defined classes are subclasses of.

*
Given what we know from our specification:

Object subclass: #Monster

instanceVariableNames: 'colour tummy'

classVariableNames: ''

poolDictionaries: ''

category: 'Sesame Street'

"This ABSTRACT class implements some generic structure and behavior common to different types of monsters in the world of Sesame Street."

*
"Choosing "accept" from the menu compiles the definition and adds it to the dictionary of classes the system knows about)."

IF I option-click in the LOWEST window and select accept, it DOES seem to add it to the 2nd-top browser window (the classes in this category) --- and complains that there's no comment! 8-)

OH --- you type the class comment IN that bottom sub-window? and accept it? Funky...!

*
"Note that choosing "update" from the leftmost browser pane's yellow button menu may sometimes be needed to force a browser to show the most recent changes."

*
Let's go ahead and set up CookieMonster's class, also:

Monster subclass: #CookieMonster

instanceVariableNames: 'state hunger'

classVariableNames: ''

poolDictionaries: ''

category: 'Sesame Street'

*
Now --- even at this early point --- can we see that, for example, CookieMonster is indeed a subclass of Monster? Yes, I think we can inspect that! [there's more than one way to do this, too, I think...]

In 2nd window; option-click; choose browse hierarchy ---

...and a Hierarchy Browser opens up, with the hierarchy

ProtoObject

 Object

 Monster

 CookieMonster

...in it! That looks promising;

*
NOW I think we need to create some methods;

...starting with the Monster class.

(note: for the Monster class:

"There is only a single class method and no class variables.")

*
If this were Java or C++, we'd probably be interested in including a constructor early on. BUT --- looks like, here, that I need the access methods first (!?)

*
So, selected Monster in 2nd System Browser window;

In the 3rd browser window, option-clicked and selected "new category"

added access;

typed into bottom window:

colour

 ^ colour

...and option-click and accept. Now colour DOES show up in 4th window; is that good?

*
And, also under access method category:

tummy

 ^ tummy

...and option-click and accept. Now colour DOES show up in 4th window; is that good?

*
Now add methods to access to change the colour and tummy "data field"?

How about a 1-argument colour setter?

colour: aSymbol

 colour := aSymbol.

 ^self

...and option-click and accept. And colour: DOES show up in 4th window;

*
The aSymbol here is actually a significant style example;

*
This reference --- the Squeak Swiki --- mentions that,

"Since Smalltalk is a "dynamically typed" language one should take care to document clearly what kinds of objects a method expects as its arguments."

*
"Good Smalltalk style uses typenames prefixed by "a" or "some" (e.g. "anInteger", "someMonster") for this purpose, instead of less descriptive identifiers such as "x", "y" or "fred"."

*
 "This convention for naming arguments uses the name of the most general class of those objects a method is willing to accept."

*
"If we don't want to make any assumptions we can use : "someObject" or "someItem"."

*
"Although it is only a convention and Smalltalk does not enforce it, the scheme serves well to simulate the documentation aspects of a "hierarchical" type system ."

*
SO --- we'll adopt this as a COURSE SMALLTALK/SQUEAK STYLE STANDARD as well. And I'll expect to see this usage in your programming project!

How about a 1-argument tummy setter?

tummy: aCollection

 tummy := aCollection.

 ^self

"again, notice --- tummy is expected to be a Collection

instance; more specialized..."

...and option-click and accept. And tummy: DOES show up in 4th window;

*
NOW can we create initialize?

*
In Smalltalk, we'll have an initialization method category --- but, for this class, only one initialize method:

initialization [class category!]

initialize

self colour: #green.

self tummy: Bag new.

 ^self

...and option-click and accept. And initialize DOES show up in 4th window;

And is this needed, too? When? When is inheritance not enough?

creation

new

 ^ super new initialize

*
(NOW can I create a Monster instance, as a test...? Can/Should you prevent this, with an abstract class, in Smalltalk? But this tutorial suggests it as a testing step...although I can't remember exactly in what way...]

didn't this work?! 8-)

george := Monster new.

george inspect.

*
"We will now look at a summary of the completed code for classes Monster and CookieMonster."

Class: Monster

Superclass: Object

Category: Sesame Street

Instance variables: colour tummy

"This ABSTRACT class implements some generic structure and behaviour common to different types of monsters."

actions

eat: someItem.

 self tummy add: someItem.

 ^self

queries

isEmpty

 ^ self tummy isNil

access

colour

 ^ colour

colour: aSymbol

 colour := aSymbol.

 ^self

tummy

 ^ tummy

tummy: aCollection

 tummy := aCollection.

 ^self

initialization

initialize

 self colour: #green.

 self tummy: Bag new.

 ^self

"There is only a single class method and no class variables."

creation

new

 ^ super new initialize

*
"Cookie monsters inherit from Monster, but add more specific behaviour of their own."

Class: CookieMonster

Superclass: Monster

Category: Sesame Street

Instance variables: state hunger

private

askForCookie

 ^ FillInTheBlank request: 'Give me cookie !!! (please)'

complainAbout: anItem

 Transcript show: 'No want ', anItem printString.

 Transcript cr.

 self colour: #red.

 ^self

isCookie: anItem

" | serves as the OR operator"

 ^ ((anItem = 'cookie') | (anItem = #cookie))

actions

eat: aCookie
"overloaded eat:!"

 super eat: aCookie.

 self colour: #green "why...?"

 ^self

nag

 | item |

 [self isAwake]

 whileTrue:

 [item := self askForCookie.

 (self isCookie: item)

 ifTrue: [self eat: item]

 ifFalse: [self complainAbout: item].

 (self isFull) ifTrue: [self sleep]]

 ^self "?"

sleep

 self state: #asleep.

 self hunger: 0.

 ^self

wakeUp

 self tummy: Bag new.

self state: #awake.

self hunger: (Random new next * 13).

"Cookie Monsters are superstitious and never eat more than

13 cookies in one go !"

self nag

^self "?"

queries

isAsleep

 ^ state = #asleep

isAwake

 ^ self isAsleep not

isFull

 self isEmpty

 ifFalse: [^ self tummy size >= self hunger] ifTrue: [^false]

access

hunger

 ^ hunger

hunger: anIntegerNumberOfCookies

 hunger := anIntegerNumberOfCookies.

 ^self "?"

state

 ^ state

state: aSymbol

 state := aSymbol.

 ^self

initialization

initialize

 self state: #asleep.

 self hunger: nil.

 super initialize

 ^self "?"

To ensure proper initialization Monster's creation class method is also overridden.

creation

new

 ^ super new initialize

*
"You will have noted that most messages are rather short.

In fact, a large proportion of them consists of a single line of code, returning (^) or assigning (:=) some value.

This is typical for object-oriented programs and Smalltalk code in particular, since all valid patterns of access to variables must be explicitely defined.

In the interest of reliability many state variables should not be accessible at all from outside of an object.

Smalltalk's approach of requiring explicit method definitions for any access to variables is facilitated by its programming environment.

Since the browser allows rapid definition of such selectors with only a few mouse clicks, modifying an already existing method, this is not particularly bothersome to do - and it pays in terms of program reliability.

In a traditional listing such methods tend to clutter clutter the code, but browsers reduce the need for such tedious documentation."

*
"Note that choosing "fileOut" fom the yellow button menu attached to the class category pane of a browser saves all such class definitions in the selected category as a text file (in the current directory), which can be "read back" into Squeak (i.e. each definition is recompiled) from a file list."

