CS 335 – S05

p. 2
Sharon M. Tuttle

CS 335 – Week 9, Lecture 2 – Spring 2005

*
Smalltalk and OOP, Part 2 of 4

*
remember: assignment #6 is due by 11:59 TONIGHT!

(I want to make sure you've gotten STARTED in Squeak...!)

Mr. Meadlin's gotten Squeak working in Linux;

I've gotten it working on my Mac;

and, I even downloaded and ran it successfully in both GH 215 and NHW 244.

So, no excuses! 8-)

*
BUT --- when we ended last time, and in Assignment #6, we are really just scratching the surface. We need to write classes! And, we need to know more about the Smalltalk-80 *language*.

*
and, yes, these programming projects WILL be in parallel with the weekly assignments. (The plan: for Assignment #6 to come out tonight...)

*
Source #1: "Reading Smalltalk", posted at

http://www.jera.com/techinfo/readingSmalltalk.pdf

*
What is Smalltalk's character set? What are Smalltalk's tokens?

*
ACCORDING to Source #1,

Smalltalk's character set is the "standard character set" [what is that, precisely...?] plus the "twelve special characters:

#
:
^
.
'
|
"
;
(
)
[
]

*
And, its tokens are:

<identifier>, <number>, <string>, <comment>, <binaryOperator>, <keyword>, <specialToken>

*
<identifier>

*
"are the same as you'd expect, except that we use capitalLetterLikeThis, rather_than_underscores."

*
(Squeak certainly discourages them --- on my Mac, when I try to type an underscore, I see a little arrow...!) BUT they do appear to be saved as underscores when I then save the Workspace.)

*
I think the point here is that it is SMALLTALK STYLE to not use underscores, but to use Java-style capital-letters-for-each-new-"word". (Or perhaps it is that Java uses Smalltalk-style? 8-))

*
<number>

*
numbers "are also as you'd expect."

*
<string>

*
strings " 'are enclosed in SINGLE quotes' "
(like SQL! 8-))

*
<comment>

*
comments " "are enclosed in double quotes" "

*
<binaryOperator>

*
"Binary operators are composed of one or two characters."

*
"The characters which CAN form a <binaryOperator> vary a little bit between implementations, but for the purpose of reading Smalltalk, you can assume that any non-alphaNumeric character which is NOT in the above list of {special characters" forms a <binaryOperator>."

*
(so, non-alphanumerics NOT in the set

: ^ . ' | " ; () [] }
)

*
"For example,

+ is a <binaryOperator>",

++ is a <binaryOperator>,

?* is a <binaryOperator>,

-> is a <binaryOperator>."

*
<keyword>

*
Careful! The term "keyword" is being used a bit differently here;

*
"A keyword: is just an <identifier> with a colon on the end of it, e.g. anyIdentifierLikeThis: is a <keyword>."

*
"In Smalltalk, a <keyword> is only special in the sense that it forms a "keyword message"."

*
"It is a distinct kind of token --- different from an identifier or a string --- but its meaning as an individual token is not special."

*
This is a definite difference between Smalltalk and many other languages ---

"Some languages have <keyword>'s like BEGIN and END with builtin special meanings.

<keyword> in Smalltalk is not this sort of thing, it's strictly a syntactic form."

*
<specialToken>

*
"<specialToken>'s are just special characters, used as separators for parsing the language.

*
#
pound

begins a #symbol

*
:
colon

(wung from here --- really, lecured straight from Source #1: "Reading Smalltalk", posted at

http://www.jera.com/techinfo/readingSmalltalk.pdf)

