CS 335 – S05

p. 8
Sharon M. Tuttle


CS 335 – Week 9, Lecture 1 – Spring 2005

*
(Week 8, Lecture 2 was Midterm Exam --- which is being returned today! 8-) )

*
REVISED SYLLABUS (roughly!):

*
Weeks 9 and 10: SMALLTALK and object-oriented programming

*
Weeks 11 and 12: SCHEME and functional programming

*
Weeks 13 and 14: PROLOG and logic programming

*
Week 15: to be determined

*
PROGRAMMING PROJECT 1 will be out tonight, and due in 2 weeks (Monday, Week 11)

*
PROGRAMMING PROJECT 2 will be out on Monday of Week 11, and due in 2 weeks (Monday, Week 13)

*
PROGRAMMING PROJECT 3 will be out on Monday of Week 13, and due in 2 weeks (Monday, Week 15)

*
and, yes, these programming projects WILL be in parallel with the weekly assignments. (The plan: for Assignment #6 to come out tonight...)

*
today: SMALLTALK and OBJECT ORIENTED PROGRAMMING #1 (of 4)

*
Source #1: UW CSE341, Winter 1997, David Notkin Lecture #15 Notes 

*
Today's "instructional objectives":

*
"overview of OO programming"

*
"Brief introduction to Smalltalk"

*
Is OO still "hot"? It was through the 80's, it was when David Notkin wrote these slides in 1997; is it still?

*
well, Perl's added objects;

*
at least one publisher is trying to sell Python as a "friendly" OO'd intro language

*
the high school AP exam is now in Java, an OO'd language

*
I think it's still fairly "hot", although I suspect there are a few "chinks" forming in its armor, too

*
(SIGCSE session: "Resolved: Objects-Early has failed us". 


BUT --- that was more that objects-early wasn't working --- not that OO'd in GENERAL wasn't...)

*
"So, what is OO (other than gOOd's middle name?)?"

*
(this is review, right? But it doesn't hurt...)

*
"(The Unix dictionary has 480 words with “oo” in them, of which “oo” is in the middle of about 64 of them, including “boom” and “doom” and “smooth” and “gloomy”.)

*
"First, let me mention that it’s important, in the long term, to distinguish:


OO programming 
from 


OO modeling 
from 


OO analysis 

from 


OO design 

from ...,  [are you getting the idea? 8-) ]


...but we’ll focus mostly on OOP (programming) here."

*
"Potential BENEFITS of OOP include (ask class to reel some off!):"


[think of these as some of POTENTIAL benefits than some CLAIM are possible from OOP, perhaps?]

*
"Aggressive use of abstract data types"

*
"There is often more stability in data than in what computations get performed on data, so OOP may yield more stable systems over time"

*
"Project-oriented more than product-oriented (allows building a family of systems more than a single system)"

*
"Aids "differential" programming, where you need only write down what is different from an existing program (exploiting inheritance)"

*
"Simplifies client code, since they only need "ask" objects to perform particular operations, even if the clients don't know what kind (type) of object they are invoking"

*
"The real world consists of objects, so modeling those as OO objects is natural"


[wait --- do you really buy this...? I'm not sure that I do, although I've heard this claim from a variety of sources...]

*
"Some of these benefits hold in practice, others don't (well, all of them are on some kind of spectrum)"

*
"It's important to have some perspective on the strengths and weaknesses of OOP. 


It's certainly NOT a panacea." all hype aside...

*
SHOULD we say any more about OOP before proceeding with Smalltalk-80 intro? 


Or will that suffice, because, after all, everyone in 335 has seen OOP in C++, 


and [THIS semester, anyway!] all of them have seen it in Java, too.

*
SMALLTALK-80

*
"The OO language we’ll study in some depth is Smalltalk-80."

*
" There are a number of reasons I’ve chosen it over some other OO languages;"

*
you've already seen C++ and Java; and, I'd like to show you something different than what you've already seen!

*
"Other choices could have been:


C++, Java, Ada 95 [?!], Beta, Cecil, CLOS, Eiffel, Dylan, Emerald, Modula-3, Oberon, Objective C, Python, Sather, Self, Theta --- and others!"

*
"EVERYTHING in Smalltalk 80 is an object (really, everything, or amazingly close to it)"

*
C++? You KNOW OO is a choice there (it is deliberately multi-paradigm)

*
Java? "Purer" than C++, but consider the primitive types (int, char, double, float, bool) --- NOT objects;

*
"It has a rich programming environment (a plus and a minus) that is intimately related to the language"

*
It's good enough for U. Washington (one of the top CS programs in the country, using it in their junior-level programming languages course during the current Winter 2005 quarter)

*
There is a freely-available implementation that has versions for Unix, Mac, and Windows (and is also used by UW in their junior-level programming languages course)

*
"Very brief background (from Dugan who took it from who knows where)"

*
"The Learning Research Group at Xerox Palo Alto Research Center (PARC) developed Smalltalk as a language for the Dynabook, during the 70's and early 80's"

*
"The Dynabook was a yet-to-be-developed "laptop of the future" "

*
"Alan Kay, Dan Ingalls, Adele Goldberg were key players in the development of Smalltalk"

*
"They selected simulation as the metaphor for programming the Dynabook"

*
"Smalltalk was influenced by Lisp. Simula, Ivan Sutherland's Sketchpad"

*
Before there was Smalltalk-80 --- which is what we will mean if we just say Smalltalk, by the way! --- there was Smalltalk 72 (and at least one other version whose exact name escapes me at the moment)

*
"Characteristics of Smalltalk-72:"

*
"interpreted"

*
"extensible syntax: fred move up x inches
"

*
"more object-oriented than Simula --- even integers are objects"

*
" 'class' is an object (but a rather special one); no subclassing"

*
"Characteristics of Smalltalk-80:"

*
"everything is an object, even classes, blocks (closures), activation records, etc."

*
"classes can have subclasses"

*
"not statically typed"

*
"rich programming environment"

*
"definitely no longer a programming language for kids!"

*
"Smalltalk-80 is now a commercial product (ParcPlace, Digitalk, Object Technology International [but that was written in 1997, remember!!]"


... but there ARE "free" versions available, too. More on those shortly (I hope!!)

*
"Smalltalk influenced the development of other object-oriented languages, such as


C++, Objective C, CLOS, Cecil, Kaleidoscope, " and more...

*
"Key language elements in Smalltalk-80 are:"

*
"Objects (or instances)"

*
"Classes"

*
"Messages"

*
"Methods"

*
"An object has some private memory (its instance variables) and some operations it can perform"

*
"Every object is a member of a class, and 


that class defines the instance variables that all instances of the class will have, and


the class also defines the operations that all instances of the class can perform."


[this had better sound familiar...!]

*
"But the values of the instance variables can be different from instance to instance of the same class" [of course!]

*
"The operations defined by a class are represented by methods; all instances of the same class respond to the same methods" [again, of course!]

*
"A method may "send a message" to other objects (instances); the actual method that is invoked depends on the message that is sent and the methods defined by the class of the "receiver" object" (the one that the message is sent to)."

*
"Once the proper method is determined, the method is executed and can use and modify the instance variables of the receiver object."

*
"That's the basic idea." 

*
"There will be a couple of twists;


the biggest one is that classes can have subclasses, which inherit the instance variables and method definitions from the superclass, allowing a subclass to use and modify an existing class."

*
"This will lead to some added complications, in particular figuring out exactly what method gets invoked when a message is sent to an instance of a subclass"


[is this complicated because Smalltalk-80 isn't statically typed? or is there something more going on here? Is dynamic scoping involved?]

*
"Smalltak-80 has relatively simple rules about this, though."

*
"Let's look at some simple examples of executing Smalltalk-80 on familiar kinds of objects; then we'll shift (probably next lecture) to how we define our own classes, etc."

*
[NEED TO CK THIS STATEMENT!! Because I'm not sure if Notkin used Squeak in 97, although UW DOES use it now (as late as Winter 2005) in its CS 341 Programming Languages course!] 


"All the examples will be shown as if we typed the expression into the Workspace and selected "Print It" (with the middle button)"

*
[umm; will I need to have explained the 3-button mouse expected by this point...?]

*
3+2

*
4 [no, 5]
[hey! is that a typo?!?] [I'm assuming this should be 5!!!!!]

*
"The "+" message is sent to the object 3 (the receiver) with the object 2 as its parameter"


[stress this --- I think it is showing the DIFFERENT way of looking at things that Smalltalk has;]

*
3+2*5

*
25

*
"Precedence among unary messages is left-to-right,


precedence among binary messages is left-to-right, and


precedence among n-ary messages is left-to-right."

*
"Unary messages are highest precedence,


binary [messages] are next, and


n-ary [messages] are last."

*
"Among n-ary messages, the longest message has precedence 


where longest means the message with the highest n)"


[isn't that kind of backwards to the trend so far...? unary highest precedence. binary next, and n-ary last? Interesting;]

*
Is this saying, then, that the + message is sent to object 3, with 2 * 5 as a parameter? Obviously not;


Is it saying that the + message is sent to object 3, with object 2 as a parameter, and that object 5 results,


and then message * is sent to object 5 with object 5 as a parameter?

*
3+(2*5)

*
13

*
OK, so is the implication here that ( )'s can still be used to indicate WHICH messages are to be sent first? [wish Notkin had elaborated here!]

*
Is the * message sent to object 2, with object 5 as parameter, resulting in object 10?


And, is message + then sent to object 3, with object 10 as parameter, resulting in object 13?

*
30+9 gcd: 26

*
13

*
"gcd: is a 2-ary message (where the receiver is on the left and the parameter is after the colon"


(oh my goodness --- is this implying that binary messages in Smalltalk are written in infix notation???)

*
[again, wish I had Notkin elaboration! But I don't, so I'm guessing:]


Is message + sent to object 30, with object 9 as parameter? resulting in object 39?


And is message gcd: then sent to object 39, with object 26 as the parameter?


I can see how the greatest common divisor of 39 and 26 would be 13;

*
30 + 9 gcd: 26 negated

*
13

*
"Why? Why isn't it -13, negating the last result I showed?"

*
[of COURSE he doesn't answer that in his notes!!]


Because unary operators have higher precedence than binary ones, perhaps? (Remember, we noted that earlier!)

*
SO --- perhaps:


Is message negated sent to object 26, resulting in object -26?


Then, is message + sent to object 30, with object 9 as parameter, resulting in object 39?


Then, is message gcd: sent to object 39, with object -26 as parameter, resulting in object 13? (the greatest common divisor of 39 and -26 is 13?)

*
(30+9 gcd: 26) negated

*
-13

*
Does this mean that message negated is sent to the object resulting from (30+9 gcd: 26)?

*
so, message + is sent to object 30, with object 9 as parameter (going left-to-right for binary messages, remember), resulting in object 39;


then, message gcd: is sent to object 39, with object 26 as its parameter, resulting in object 13;


then, message negated is sent to object 13, resulting in object -13?

*
3.0+2*5

*
25.0

*
"Different code for [message] + is executed depending on the class of the receiver (integer or real, in this case)"

*
Message + is sent to object 3.0, with object 2 as a parameter; presumably, object 5.0 results;


Then, message * is sent to object 5.0, with object 5 as parameter, and so object 25.0 results.

*
(1 < 2) ifFalse: [4]

*
nil

*
"The brackets represent a block, essentially an expression whose evaluation is delayed until it is asked to evaluate itself"

*
Message < is sent to object 1 with object 2 as parameter, resulting in object true?


Then, message ifFalse: is sent to object true with object (block) [4] as parameter, and since the receiver object is NOT false, no object results (thus, the nil)?

*
(3<2) ifFalse: [4]

*
4

*
Message < is sent to object 3 with object 2 as parameter, resulting in object false?


Then, message ifFalse: is sent to object false with object (block) [4] as parameter, and since the receiver object is NOT false, object (block) [4] is asked to evaluate itself, resulting in object 4?

*
(1<2) ifTrue: [4] ifFalse: [5]

*
4

*
"The name of the 3-ary message is ifTrue:ifFalse:, 


where the receiver comes before the first part, 


the first argument between the two parts, and 


the second argument after the last part"

*
So, because of the parentheses, message < is sent to object 1, with object 2 as parameter, with object true being the result;


Then, message ifTrue:ifFalse: is sent to object true, with object [4] as the first argument and object [5] as the second argument, and since the receiver was object true, the object [4] is evaluated, and the object 4 results?

*
(1<2) ifFalse: [5] ifTrue: [4]

*
4

*
"Only because somebody actually defined this as a separate method on booleans"

[end of Notkin Lecture 15, Winter 97]

*
Source #2: Intro to the Squeak Environment,


http://www.cs.washington.edu/education/courses/cse341/common/help/squeak-env/index.htm

*
Intro to the Squeak Environment, then? Or more about the Smalltalk language??

*
Let's try the Squeak intro --- it would be neat to RUN and VERIFY the above examples! [BUT be careful --- it is Squeak 2.7, I think, and this is Squeak 3.7.5 Beta, I think!]

*
Important tips?

*
"Save your Squeak image in your home directory" ??

*
"To run Squeak directly in your network home directory, you will have to map a network drive (Squeak doesn't like Windows share paths.)" ??

*
"Environment takes some getting used to: START AS SOON AS YOU CAN!"

*
OK, THAT's why I need to do this TODAY if possible, BEFORE going on w/more Smalltalk-80 details;

*
"Squeak [and Smalltalk-80?] needs three buttons; many Mac/Windows[/Linux] machines have fewer"

*
"Name buttons by color"

*
"Color:

Mac mappings:

Windows mappings:
usual meaning:


Red (l)

click button

left-click 

move/select


Yellow (m)
option-click

right-click

context menu


Blue (r)
command-click

ALT-left-click

window/Morphic 










menu"

*
wing from here, using the several tutorials you've opened up --- GULP!

