
Free Pascal :
Users’ manual

Users’ manual for Free Pascal, version 1.0.8
Document version 1.9

May 2003

Michaël Van Canneyt
Florian Klämpfl



Contents

1 Introduction 7

1.1 About this document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 About the compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Getting more information.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Installing the compiler 9

2.1 Before Installation : Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

System requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Software requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Under DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Under UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Under OS/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2 Installing the compiler.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Installing under DOS or Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Mandatory installation steps.. . . . . . . . . . . . . . . . . . . . . . . . . . 10

Optional Installation: The coprocessor emulation. . . . . . . . . . . . . . . 11

Installing under Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Mandatory installation steps.. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Optional configuration steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Before compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.5 Testing the compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3 Compiler usage 15

3.1 File searching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Command line files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Unit files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Include files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Object files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

About long filenames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

1



CONTENTS

3.2 Compiling a program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

3.3 Compiling a unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.4 Units, libraries and smartlinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Creating an executable for GO32V1 and PMODE/DJ targets. . . . . . . . . . . . . 19

GO32V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

PMODE/DJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.6 Reducing the size of your program. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Compiling problems 22

4.1 General problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

4.2 Problems you may encounter under DOS. . . . . . . . . . . . . . . . . . . . . . . 22

5 Compiler configuration 23

5.1 Using the command-line options. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

General options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Options for getting feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Options concerning files and directories. . . . . . . . . . . . . . . . . . . . . . . . 24

Options controlling the kind of output.. . . . . . . . . . . . . . . . . . . . . . . . . 25

Options concerning the sources (language options). . . . . . . . . . . . . . . . . . 27

5.2 Using the configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

#IFDEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

#IFNDEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

#ELSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

#ENDIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

#DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

#UNDEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

#WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

#INCLUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

#SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

5.3 Variable substitution in paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 The IDE 33

6.1 First steps with the IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Starting the IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

IDE Command line options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

The IDE screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

6.2 Navigating in the IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Using the keyboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Using the mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Navigating in dialogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

6.3 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

2



CONTENTS

Window basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Sizing and moving windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Working with multiple windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Dialog windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

6.4 The Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Accessing the menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

The File menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

The Edit menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

The Search menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

The Run menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

The Compile menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

The Debug menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

The Tools menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

The Options menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

The Window menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

The Help menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

6.5 Editing text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Insert modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Setting bookmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Jumping to a source line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Syntax highlighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Code Completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Code Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

6.6 Searching and replacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

6.7 The symbol browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

6.8 Running programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

6.9 Debugging programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Using breakpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Using watches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

The call stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

The GDB window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

6.10 Using Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

The messages window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

The ASCII table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

The calculator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Adding new tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Meta parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Building a command line dialog box. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3



CONTENTS

6.11 Project management and compiler options. . . . . . . . . . . . . . . . . . . . . . . 65

The primary file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

The directory dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

The target operating system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Compiler options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Linker options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Memory sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Debug options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

The switches mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

6.12 Customizing the IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

The desktop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

The Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

6.13 The help system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Navigating in the help system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Working with help files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

The about dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

6.14 Keyboard shortcuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

7 Porting Turbo Pascal Code 86

7.1 Things that will not work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Things which are extra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

7.3 Turbo Pascal compatibility mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 A note on long file names underDOS . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Utilities that come with Free Pascal 91

8.1 Demo programs and examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Supplied programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

ppudump program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

ppumove program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

ptop - Pascal source beautifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ptop program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

The ptop configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ptopu unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

rstconv program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

fpcmake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

9 Units that come with Free Pascal 98

9.1 Standard units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

4



CONTENTS

9.2 Under DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

9.3 Under Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

9.4 Under Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

9.5 Under OS/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

9.6 Unit availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

10 Debugging your Programs 101

10.1 Compiling your program with debugger support. . . . . . . . . . . . . . . . . . . .101

10.2 Usinggdb to debug your program. . . . . . . . . . . . . . . . . . . . . . . . . . .102

10.3 Caveats when debugging withgdb . . . . . . . . . . . . . . . . . . . . . . . . . . .103

10.4 Support forgprof , theGNU profiler . . . . . . . . . . . . . . . . . . . . . . . . . .104

10.5 Detecting heap memory leaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

10.6 Line numbers in run-time error backtraces. . . . . . . . . . . . . . . . . . . . . . .104

10.7 Combiningheaptrc andlineinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

11 CGI programming in Free Pascal 106

11.1 Getting your data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Data coming through standard input.. . . . . . . . . . . . . . . . . . . . . . . . . .106

Data passed through an environment variable. . . . . . . . . . . . . . . . . . . . .108

11.2 Producing output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

11.3 I’m under Windows, what now ?. . . . . . . . . . . . . . . . . . . . . . . . . . . .110

A Alphabetical listing of command-line options 111

B Alphabetical list of reserved words 114

C Compiler messages 115

C.1 General compiler messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

C.2 Scanner messages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

C.3 Parser messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

C.4 Type checking errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

C.5 Symbol handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

C.6 Code generator messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

C.7 Errors of assembling/linking stage. . . . . . . . . . . . . . . . . . . . . . . . . . .137

C.8 Unit loading messages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

C.9 Command-line handling errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

C.10 Assembler reader errors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

General assembler errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

I386 specific errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

m68k specific errors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

D Run time errors 147

5



CONTENTS

E The Floating Point Coprocessor emulator 150

F A samplegdb.ini file 152

G Options and settings 153

6



Chapter 1

Introduction

1.1 About this document

This is the user’s manual for Free Pascal. It describes the installation and use of the Free Pascal
compiler on the different supported platforms. It does not attempt to give an exhaustive list of all
supported commands, nor a definition of the Pascal language. Look at theReference guidefor
these things. For a description of the possibilities and the inner workings of the compiler, see the
Programmers guide. In the appendices of this document you will find lists of reserved words and
compiler error messages (with descriptions).

This document describes the compiler as it is/functions at the time of writing. First consult the
README andFAQ files, distributed with the compiler. TheREADME andFAQ files are, in case
of conflict with this manual, authoritative.

1.2 About the compiler

Free Pascal is a 32-bit compiler for the i386 and m68k processors. Currently, it supports the following
operating systems:

• DOS

• LINUX

• AMIGA (version 0.99.5 only)

• WINDOWS

• OS/2 (using the EMX package, so it also works on DOS/Windows)

• FREEBSD

• BEOS (under development)

• SOLARIS (under development)

• PALM OS (under development)

• NETBSD

• OPENBSD (under development)

7

file:../ref/ref.html
file:../prog/prog.html


CHAPTER 1. INTRODUCTION

Free Pascal is designed to be, as much as possible, source compatible with Turbo Pascal 7.0 and
Delphi 5 (although this goal is not yet attained), but it also enhances these languages with elements
like operator overloading. And, unlike these ancestors, it supports multiple platforms.

It also differs from them in the sense that you cannot use compiled units from one system for the
other.

Also, at the time of writing, there is a beta version of an Integrated Development Environment (IDE)
available for Free Pascal.

Free Pascal consists of three parts :

1. The compiler program itself.

2. The Run-Time Library (RTL).

3. Utility programs and units.

Of these you only need the first two, in order to be able to use the compiler. In this document, we
describe the use of the compiler. The RTL is described in theReference guide.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the following addresses:

• http://www.freepascal.org/is the main site. It contains also useful mail addresses and links to
other places. It also contains the instructions for inscribing to themailing-list.

• http://community.freepascal.org:10000/is a forum site where questions can be posted.

Other than that, some mirrors exist.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me atmichael@freepascal.org. .

Let’s get on with something useful.

8

file:../ref/ref.html
http://www.freepascal.org
http://community.freepascal.org:10000/
mailto:michael@freepascal.org


Chapter 2

Installing the compiler

2.1 Before Installation : Requirements

System requirements
The compiler needs at least the following hardware:

1. An Intel 80386 or higher processor (for the intel version). A coprocessor is not required,
although it will slow down your program’s performance if you do floating point calculations
without a coprocessor, since emulation will be used.

2. 4 Megabytes of free memory.

3. At least 3 Megabytes free disk space.

Software requirements
Under DOS

TheDOSdistribution contains all the files you need to run the compiler and compile pascal programs.

Under UNIX

UnderUNIX systems (such asLINUX ) you need to have the following programs installed :

1. GNU as, theGNU assembler.

2. GNU ld, theGNU linker.

3. Optionally (but highly recommended) :GNU make. For easy recompiling of the compiler and
Run-Time Library, this is needed.

Under Windows

The WINDOWS distribution contains all the files you need to run the compiler and compile pascal
programs. However, it may be a good idea to install themingw32 tools or thecygwin development
tools. Links to both of these tools can be found onhttp://www.freepascal.org

9



CHAPTER 2. INSTALLING THE COMPILER

Under OS/2

While the Free Pascal distribution comes with all necessary tools, it is a good idea to install the EMX
extender in order to compile and run programs with the Free Pascal compiler. The EMX extender
can be found on:
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html

2.2 Installing the compiler.

The installation of Free Pascal is easy, but is platform-dependent. We discuss the process for each
platform separately.

Installing under DOS or Windows
Mandatory installation steps.

First, you must get the latest distribution files of Free Pascal. They come as zip files, which you must
unzip first, or you can download the compiler as a series of separate files. This is especially useful if
you have a slow connection, but it is also nice if you want to install only some parts of the compiler
distribution. The distribution zip file contains an installation programINSTALL.EXE. You must run
this program to install the compiler.

The screen of the installation program looks like figure2.1.

Figure 2.1: TheDOS install program screen

The program allows you to select:

• What components you wish to install. e.g do you want the sources or not, do you want docs or
not. Items that you didn’t download when downloading as separate files, will not be enabled,
i.e. you can’t select them.

• Where you want to install (the default location isC:\PP ).

10



CHAPTER 2. INSTALLING THE COMPILER

Figure 2.2:

In order to run Free Pascal from any directory on your system, you must extend your path variable to
contain theC:\PP\BIN directory. Usually this is done in theAUTOEXEC.BAT file. It should look
something like this :

SET PATH=%PATH%;C:\PP\BIN\GO32V2

for DOS or

SET PATH=%PATH%;C:\PP\BIN\WIN32

for WINDOWS and finally

SET PATH=%PATH%;C:\PP\BIN\OS2

for OS/2. (Again, assuming that you installed in the default location).

On OS/2, Free Pascal installs some libraries from the EMX package if they were not yet installed
(the installer will notify you if they should be installed). They are located in the

C:\PP\DLL

directory. The name of this directory should be added to theLIBPATH directive in theconfig.sys
file:

LIBPATH=XXX;C:\PP\DLL

Obviously, any existing directories in theLIBPATH directive (indicated byXXX in the above ex-
ample) should be preserved.

Optional Installation: The coprocessor emulation

For people who have an older CPU type, without math coprocessor (i387) it is necessary to install a
coprocessor emulation, since Free Pascal uses the coprocessor to do all floating point operations.

11



CHAPTER 2. INSTALLING THE COMPILER

The installation of the coprocessor emulation is handled by the installation program (INSTALL.EXE)
underDOS and WINDOWS.

Installing under Linux
Mandatory installation steps.

TheLINUX distribution of Free Pascal comes in three forms:

• a tar.gz version, also available as seperate files.

• a .rpm (Red Hat Package Manager) version, and

• a .deb (Debian) version.

All of these packages contain aELF version of the compiler binaries and units. the olderaout
binaries are no longer distributed, although you still can use the comiler on anaout system if you
recompile it.

If you use the.rpm format, installation is limited to

rpm -i fpc-pascal-XXX.rpm

(XXXis the version number of the.rpm file)

If you use Debian, installation is limited to

dpkg -i fpc-XXX.deb

Here again,XXXis the version number of the.deb file.

You need root access to install these packages. The.tar file allows you to do an installation if you
don’t have root permissions.

When downloading the.tar file, or the separate files, installation is more interactive.

In case you downloaded the.tar file, you should first untar the file, in some directory where you have
write permission, using the following command:

tar -xvf fpc.tar

We supposed here that you downloaded the filefpc.tar somewhere from the Internet. (The real
filename will have some version number in it, which we omit here for clarity.)

When the file is untarred, you will be left with more archive files, and an install program: an install-
ation shell script.

If you downloaded the files as separate files, you should at least download theinstall.sh script, and
the libraries (inlibs.tar.gz).

To install Free Pascal, all that you need to do now is give the following command:

./install.sh

And then you must answer some questions. They’re very simple, they’re mainly concerned with 2
things :

1. Places where you can install different things.

2. Deciding if you want to install certain components (such as sources and demo programs).

12



CHAPTER 2. INSTALLING THE COMPILER

The script will automatically detect which components are present and can be installed. It will only
offer to install what has been found. because of this feature, you must keep the original names when
downloading, since the script expects this.

If you run the installation script as theroot user, you can just accept all installation defaults. If you
don’t run asroot , you must take care to supply the installation program with directory names where
you have write permission, as it will attempt to create the directories you specify. In principle, you
can install it wherever you want, though.

At the end of installation, the installation program will generate a configuration file (fpc.cfg) for the
Free Pascal compiler which reflects the settings that you chose. It will install this file in the/etc
directory or in your home directory (with name.fpc.cfg) if you do not have write permission in the
/etc directory. It will make a copy in the directory where you installed the libraries.

The compiler will first look for a file.fpc.cfg in your home directory before looking in the/etc
directory.

2.3 Optional configuration steps

On any platform, after installing the compiler you may wish to set some environment variables. The
Free Pascal compiler recognizes the following variables :

• PPC_EXEC_PATHcontains the directory where support files for the compiler can be found.

• PPC_CONFIG_PATHspecifies an alternate path to find thefpc.cfg.

• PPC_ERROR_FILEspecifies the path and name of the error-definition file.

• FPCDIRspecifies the root directory of the Free Pascal installation. (e.g :C:\PP\BIN )

These locations are, however, set in the sample configuration file which is built at the end of the
installation process, except for thePPC_CONFIG_PATHvariable, which you must set if you didn’t
install things in the default places.

2.4 Before compiling

Also distributed in Free Pascal is a README file. It contains the latest instructions for installing
Free Pascal, and should always be read first.

Furthermore, platform-specific information and common questions are addressed in theFAQ. It
should be read before reporting any bug.

2.5 Testing the compiler

After the installation is completed and the optional environment variables are set as described above,
your first program can be compiled.

Included in the Free Pascal distribution are some demonstration programs, showing what the com-
piler can do. You can test if the compiler functions correctly by trying to compile these programs.

The compiler is called

• fpc.exe under WINDOWS, OS/2 andDOS.

• fpc under most other operating systems.

13



CHAPTER 2. INSTALLING THE COMPILER

To compile a program (e.gdemo\hello.pp ) simply type :

fpc hello

at the command prompt. If you don’t have a configuration file, then you may need to tell the compiler
where it can find the units, for instance as follows:

fpc -Fuc:\pp\units\go32v2\rtl hello

underDOS, and underLINUX you could type

fpc -Fu/usr/lib/fpc/NNN/units/linux/rtl hello

(replaceNNNwith the version number of Free Pascal that you are using). This is, of course, assuming
that you installed underC:\PP or /usr/lib/fpc/NNN, respectively.

If you got no error messages, the compiler has generated an executable calledhello.exe underDOS,
OS/2 or WINDOWS, or hello (no extension) underUNIX and most other operating systems.

To execute the program, simply type :

hello

If all went well, you should see the following friendly greeting:

Hello world

14



Chapter 3

Compiler usage

Here we describe the essentials to compile a program and a unit. For more advanced uses of the
compiler, see the section on configuring the compiler, and theProgrammers guide.

The examples in this section suppose that you have afpc.cfg which is set up correctly, and which
contains at least the path setting for the RTL units. In principle this file is generated by the installation
program. You may have to check that it is in the correct place (see section5.2 for more information
on this).

3.1 File searching

Before you start compiling a program or a series of units, it is important to know where the compiler
looks for its source files and other files. In this section we discuss this, and we indicate how to
influence this.

Remark: The use of slashes (/) and backslashes (\ ) as directory separators is irrelevant, the compiler will
convert to whatever character is used on the current operating system. Examples will be given using
slashes, since this avoids problems onUNIX systems (such asLINUX ).

Command line files
The file that you specify on the command line, such as in

fpc foo.pp

will be looked for ONLY in the current directory. If you specify a directory in the filename, then the
compiler will look in that directory:

fpc subdir/foo.pp

will look for foo.pp in the subdirectorysubdir of the current directory.

Under case sensitive file systems (such asLINUX andUNIX ), the name of this file is case sensitive,
under other operating systems (such asDOS, WINDOWS NT, OS/2) this is not the case.

Unit files
When you compile a unit or program that needs other units, the compiler will look for compiled
versions of these units in the following way:

15

file:../prog/prog.html


CHAPTER 3. COMPILER USAGE

1. It will look in the current directory.

2. It will look in the directory where the source file is being compiled.

3. It will look in the directory where the compiler binary is.

4. It will look in all the directories specified in the unit search path.

You can add a directory to the unit search path with the (-Fu , (see page5.1)) option. Every occur-
rence of one of this options willinsert a directory to the unit search path. i.e. the last path on the
command line will be searched first.

The compiler adds several paths to the unit search path:

1. The contents of the environment variableXXUNITS, whereXX must be replaced with one of
the supported targets:GO32V2, LINUX,WIN32, OS2, BEOS, FREEBSD, NETBSD.

2. The standard unit directory. This directory is determined from theFPCDIRenvironment vari-
able. If this variable is not set, then it is defaulted to the following:

• On LINUX :

/usr/local/lib/fpc/VERSION
or

/usr/lib/fpc/VERSION

whichever is found first.

• On other OSes: the compiler binary directory, with ’../’ appended to it, if it exists.

After this directory is determined , the following paths are added to the search path:

(a) FPCDIR/units/TARGET

(b) FPCDIR/units/TARGET/rtl

Here target must be replaced by the name of the target you are compiling for.

You can see what paths the compiler will search by giving the compiler the-vu option.

On systems where filenames to lower-case (such asUNIX andLINUX ), the compiler will first convert
the filename of a unit to all-lowercase. This is necessary, since Pascal is case-independent, and the
statementsUses Unit1; or uses unit1; should have the same effect.

Also, unit names that are longer than 8 characters will first be looked for with their full length. If the
unit is not found with this name, the name will be truncated to 8 characters, and the compiler will
look again in the same directories, but with the truncated name.

For instance, suppose that the filefoo.pp needs the unitbar. Then the command

fpc -Fu.. -Fuunits foo.pp

will tell the compiler to look for the unitbar in the following places:

1. In the current directory.

2. In the directory where the compile binary is (not underLINUX ).

3. In the parent directory of the current directory.

4. In the subdirectoryunits of the current directory

5. In the standard unit directory.

16



CHAPTER 3. COMPILER USAGE

If the compiler finds the unit it needs, it will look for the source file of this unit in the same directory
where it found the unit. If it finds the source of the unit, then it will compare the file times. If the
source file was modified more recent than the unit file, the compiler will attempt to recompile the
unit with this source file.

If the compiler doesn’t find a compiled version of the unit, or when the-B option is specified, then
the compiler will look in the same manner for the unit source file, and attempt to recompile it.

It is recommended to set the unit search path in the configuration filefpc.cfg. If you do this, you
don’t need to specify the unit search path on the command-line every time you want to compile
something.

Include files
If you include files in your source with the{$I filename} directive, the compiler will look for
it in the following places:

1. It will look in the path specified in the include file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add files to the include file search path with the-I , (see page5.1) or -Fi , (see page5.1)
options.

As an example, consider the following include statement in a fileunits/foo.pp:

{$i ../bar.inc}

Then the following command :

fpc -Iincfiles units/foo.pp

will cause the compiler to look in the following directories forbar.inc:

1. the parent directory of the current directory

2. theunits subdirectory of the current directory

3. the incfiles directory of the current directory.

Object files
When you link to object files (using the{$L file.o} directive, the compiler will look for this file
in the same way as it looks for include files:

1. It will look in the path specified in the object file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the object file search path.

You can add files to the object file search path with the-Fo , (see page5.1) option.

17



CHAPTER 3. COMPILER USAGE

Configuration file
Starting from version 1.0.6 of the compiler, usage of the fileppc386.cfg is considered deprecated.
The file should now be calledfpc.cfg and will work for all processor targets. For compatibility,
fpc.cfg will be searched first, and if not found, the fileppc386.cfg will be used.

Unless you specify the-n , (see page5.1) option, the compiler will look for a configuration file
fpc.cfg in the following places:

• UnderUNIX (such asLINUX )

1. The current directory.

2. In your home directory, it looks for.fpc.cfg.

3. The directory specified in the environment variablePPC_CONFIG_PATH, and if it’s not
set under/etc.

• Under all other OSes:

1. The current directory.

2. If it is set, the directory specified in the environment variable.PPC_CONFIG_PATH.

3. The directory where the compiler is.

About long filenames
Free Pascal can handle long filenames under WINDOWS; it will use support for long filenames if it is
available.

If no support for long filenames is present, it will truncate unit names to 8 characters.

It is not recommended to put units in directories that contain spaces in their names, since the linker
doesn’t understand such filenames.

3.2 Compiling a program

Compiling a program is very simple. Assuming that you have a program source in the fileprog.pp,
you can compile this with the following command:

fpc [options] prog.pp

The square brackets[ ] indicate that what is between them is optional.

If your program file has the.pp or .pas extension, you can omit this on the command line, e.g. in
the previous example you could have typed:

fpc [options] prog

If all went well, the compiler will produce an executable file. You can execute it straight away, you
don’t need to do anything else.

You will notice that there is also another file in your directory, with extensions.o. This contains the
object file for your program. If you compiled a program, you can delete the object file (.o), but not if
you compiled a unit.

Then the object file contains the code of the unit, and will be linked in any program that uses the unit
you compiled, so you shouldn’t remove it.

18



CHAPTER 3. COMPILER USAGE

3.3 Compiling a unit

Compiling a unit is not essentially different from compiling a program. The difference is mainly that
the linker isn’t called in this case.

To compile a unit in the filefoo.pp, just type :

fpc foo

Recall the remark about file extensions in the previous section.

When all went well, you will be left with 2 (two) unit files:

1. foo.ppu This is the file describing the unit you just compiled.

2. foo.o This file contains the actual code of the unit. This file will eventually end up in the
executables.

Both files are needed if you plan to use the unit for some programs. So don’t delete them. If you
want to distribute the unit, you must provide both the.ppu and .o file. One is useless without the
other.

Remark: Under LINUX and UNIX , a unit source filemusthave a lowercase filename. Since Pascal is case
independent, you can specify the names of units in theuses clause in either case. To get a unique
filename, the Free Pascal compiler changes the name of the unit to all lowercase when looking for
unit files.

The compiler produces lowercase files, so your unit will be found, even if your source file has up-
percase letters in it. Only when the compiler tries to recompile the unit, it will not find your source
because of the uppercase letters.

3.4 Units, libraries and smartlinking

The Free Pascal compiler supports smartlinking and the creation of libraries. However, the default
behaviour is to compile each unit into 1 big object file, which will be linked as a whole into your
program.

Not only is it possible to compile a shared library under WINDOWS andLINUX , but also it is possible
to take existing units and put them together in 1 static or shared library (using theppumove tool)

3.5 Creating an executable for GO32V1 and PMODE/DJ targets

The GO32V1 platform is officially no longer supported, so this section is of interest only to people
who wish to make go32V1 binaries anyway.

GO32V1
When compiling underDOS, GO32V2 is the default target. However, if you use go32V1 (using the
-TGO32V1 switch), the compilation process leaves you with a file which you cannot execute right
away. There are 2 things you can do when compiling has finished.

The first thing is to use theDOS extender from D.J. Delorie to execute your program :

go32 prog

19



CHAPTER 3. COMPILER USAGE

This is fine for testing, but if you want to use a program regularly, it would be easier if you could just
type the program name, i.e.

prog

This can be accomplished by making aDOS executable of your compiled program.

There two ways to create aDOS executable (underDOS only):

1. if the GO32.EXE is already installed on the computers where the program should run, you
must only copy a program calledSTUB.EXE at the begin of the AOUT file. This is accom-
plished with theAOUT2EXE.EXE program. which comes with the compiler:

AOUT2EXE PROG

and you get aDOS executable which loads theGO32.EXE automatically. theGO32.EXE
executable must be in current directory or be in a directory in thePATHvariable.

2. The second way to create aDOSexecutable is to putGO32.EXE at the beginning of theAOUT
file. To do this, at the command prompt, type :

COPY /B GO32.EXE+PROG PROG.EXE

(assuming Free Pascal created a file calledPROG, of course.) This becomes then a stand-
alone executable forDOS, which doesn’t need theGO32.EXE on the machine where it should
run.

PMODE/DJ
You can also use the PMODE/DJ extender to run your Free Pascal applications. To make an ex-
ecutable which works with the PMODE extender, you can simply create an GO32V2 executable (the
default), and then convert it to a PMODE executable with the following two extra commands:

1. First, strip the GO32V2 header of the executable:

EXE2COFF PROG.EXE

(we suppose thatPROG.EXE is the program generated by the compilation process.

2. Secondly, add the PMODE stub:

COPY /B PMODSTUB.EXE+PROG PROG.EXE

If the PMODSTUB.EXE file isn’t in your local directory, you need to supply the whole path
to it.

That’s it. No additional steps are needed to create a PMODE extender executable.

Be aware, though, that the PMODE extender doesn’t support virtual memory, so if you’re short on
memory, you may run unto trouble. Also, officially there is not support for the PMODE/DJ extender.
It just happens that the compiler and some of the programs it generates, run under this extender too.

20



CHAPTER 3. COMPILER USAGE

3.6 Reducing the size of your program

When you created your program, it is possible to reduce its size. This is possible, because the
compiler leaves a lot of information in the program which, strictly speaking, isn’t required for the
execution of it. The surplus of information can be removed with a small program calledstrip.The
usage is simple. Just type

strip prog

On the command line, and thestrip program will remove all unnecessary information from your
program. This can lead to size reductions of up to 30 %.

Remark: In the WIN32 version,strip is calledstripw.

You can use the-Xs switch to let the compiler do this stripping automatically at program compile
time (the switch has no effect when compiling units).

Another technique to reduce the size of a program is to use smartlinking. Normally, units (including
the system unit) are linked in as a whole. It is however possible to compile units such that the can be
smartlinked. This means that only the functions and procedures are linked in your program, leaving
out any unnecessary code. This technique is described in full in the programmers guide.

21



Chapter 4

Compiling problems

4.1 General problems

• IO-error -2 at ... : Under LINUX you can get this message at compiler startup. It means
typically that the compiler doesn’t find the error definitions file. You can correct this mistake
with the-Fr , (see page5.1) option underLINUX .

• Error : File not found : xxx or Error: couldn’t compile unit xxx : This typically happens
when your unit path isn’t set correctly. Remember that the compiler looks for units only in
the current directory, and in the directory where the compiler itself is. If you want it to look
somewhere else too, you must explicitly tell it to do so using the-Fu , (see page5.1) option.
Or you must set op a configuration file.

4.2 Problems you may encounter under DOS

• No space in environment.
An error message like this can occur, if you callSET_PP.BAT in theAUTOEXEC.BAT.
To solve this problem, you must extend your environment memory. To do this, search a line in
theCONFIG.SYS like

SHELL=C:\DOS\COMMAND.COM

and change it to the following:

SHELL=C:\DOS\COMMAND.COM /E:1024

You may just need to specify a higher value, if this parameter is already set.

• Coprocessor missing
If the compiler writes a message that there is no coprocessor, install the coprocessor emulation.

• Not enough DPMI memory
If you want to use the compiler withDPMIyou must have at least 7-8 MB freeDPMImemory,
but 16 Mb is a more realistic amount.

22



Chapter 5

Compiler configuration

The output of the compiler can be controlled in many ways. This can be done essentially in two
distinct ways:

• Using command-line options.

• Using the configuration file:fpc.cfg.

The compiler first reads the configuration file. Only then the command line options are checked. This
creates the possibility to set some basic options in the configuration file, and at the same time you
can still set some specific options when compiling some unit or program. First we list the command
line options, and then we explain how to specify the command line options in the configuration file.
When reading this, keep in mind that the options are case sensitive.

5.1 Using the command-line options

The available options for version 1.0.6 of the compiler are listed by category (see appendix A for a
listing as generated by the compiler):

General options
-h if you specify this option, the compiler outputs a list of all options, and exits after that.

-? idem as-h , waiting after every screenfull for the enter key.

-i This option tells the compiler to print the copyright information. You can give it an option, as
-ixxx where xxx can be one of the following:

D : Returns the compiler date.

V : Returns the compiler version.

SO : Returns the compiler OS.

SP : Returns the compiler processor.

TO : Returns the target OS.

TP : Returns the target Processor.

-l This option tells the compiler to print the Free Pascal logo on standard output. It also gives you
the Free Pascal version number.

-n Tells the compiler not to read default the configuration file. You can still pass a configuration file
with the@option.

23



CHAPTER 5. COMPILER CONFIGURATION

Options for getting feedback
-vxxx Be verbose.xxx is a combination of the following :

• e : Tells the compiler to show only errors. This option is on by default.

• i : Tells the compiler to show some general information.

• w : Tells the compiler to issue warnings.

• n : Tells the compiler to issue notes.

• h : Tells the compiler to issue hints.

• l : Tells the compiler to show the line numbers as it processes a file. Numbers are shown
per 100.

• u : Tells the compiler to print information on the units it loads.

• t : Tells the compiler to print the names of the files it tries to open.

• p : Tells the compiler to print the names of procedures and functions as it is processing
them.

• c : Tells the compiler to warn you when it processes a conditional.

• m: Tells the compiler to write which macros are defined.

• d : Tells the compiler to write other debugging info.

• a : Tells the compiler to write all possible info. (this is the same as specifying all options)

• 0 : Tells the compiler to write no messages. This is useful when you want to override the
default setting in the configuration file.

• b : Tells the compiler to show all procedure declarations if an overloaded function error
occurs.

• x : Tells the compiler to output some executable info (for Win32 platform only).

• r : Rhide/GCC compatibility mode: formats the errors differently, so they are understood
by RHIDE.

Options concerning files and directories
-exxx xxx specifies the directory where the compiler can find the executablesas (the assembler) and

ld (the linker).

-FD same as-e .

-Fexxx This option tells the compiler to write errors, etc. to the file namedxxx.

-FExxx tells the compiler to write the executable and units in directoryxxx instead of th current
directory.

-Fixxx Addsxxx to the include file search path.

-Flxxx Addsxxx to the library searching path, and is passed to the linker.

-FLxxx (LINUX only) Tells the compiler to usexxx as the dynamic linker. Default this is/lib/ld-
linux.so.2, or /Hlib/ld-linux.so.1, depending on which one is found first.

-Foxxx Addsxxx to the object file search path. This path is used when looking for files that need to
be linked in.

-Frxxx xxx specifies the file which contain the compiler messages. Default the compiler has built-in
messages. Specifying this option will override the default messages.

24



CHAPTER 5. COMPILER CONFIGURATION

-Fuxxx Add xxx to the unit search path. Units are first searched in the current directory. If they are
not found there then the compiler searches them in the unit path. You mustalwayssupply the
path to the system unit.

-FUxxx Tells the compiler to write units in directoryxxx instead of the current directory. It over-
rides the-FE option.

-Ixxx Add xxx to the include file search path. This option has the same effect as-Fi .

-P uses pipes instead of files when assembling. This may speed up the compiler onOS/2 andLINUX .
Only with assemblers (such asGNU as) that support piping...

Options controlling the kind of output.
for more information on these options, see alsoProgrammers guide

-a Tells the compiler not to delete the assembler files it generates (not when using the internal as-
sembler). This also counts for the (possibly) generated batch script.

-al Tells the compiler to include the sourcecode lines in the assembler file as comments.

-ar tells the compiler to list register allocation and release info in the assembler file. This is primarily
intended for debugging the code generated by the compiler.

-at tells the compiler to list information about temporary allocations and deallocations in the assem-
bler file.

-Axxx specifies what kind of assembler should be generated . Herexxx is one of the following :

as assemble usingGNU as.

asaout assemble usingGNU as for aout (Go32v1).

nasmcoff coff (Go32v2) file using Nasm.

nasmelf elf32 (Linux) file using Nasm.

nasmobj object file using Nasm.

masm object file using Masm (Microsoft).

tasm object file using Tasm (Borland).

coff coff object file (Go32v2) using the internal binary object writer.

pecoff pecoff object file (Win32) using the internal binary object writer.

-B tells the compiler to re-compile all used units, even if the unit sources didn’t change since the last
compilation.

-b tells the compiler to generate browser info. This information can be used by an Integrated Devel-
opment Environment (IDE) to provide information on classes, objects, procedures, types and
variables in a unit.

-bl is the same as-b but also generates information about local variables, types and procedures.

-CD Create a dynamic library. This is used to transform units into dynamically linkable libraries on
LINUX .

-Chxxx Reservesxxx bytes heap.xxx should be between 1024 and 67107840.

-Ci Generate Input/Output checking code. In case some input/output code of your program returns
an error status, the program will exit with a run-time error. Which error is generated depends
on the I/O error.

25

file:../prog/prog.html


CHAPTER 5. COMPILER CONFIGURATION

-Cn Omit the linking stage.

-Co Generate Integer overflow checking code. In case of integer errors, a run-time error will be
generated by your program.

-Cr Generate Range checking code. In case your program acesses an array element with an in-
valid index, or if it increases an enumerated type beyond it’s scope, a run-time error will be
generated.

-CR Generate checks when calling methods to verify if the virtual method table for that object is
valid.

-Csxxx Set stack size toxxx .

-Ct generate stack checking code. In case your program performs a faulty stack operation, a run-
rime error will be generated.

-CX Create a smartlinked unit when writing a unit. smartlinking will only link in the code parts that
are actually needed by the program. All unused code is left out. This can lead to substantially
smaller binaries.

-dxxx Define the symbol namexxx . This can be used to conditionally compile parts of your code.

-E Same as-Cn .

-g Generate debugging information for debugging withgdb

-gg idem as-g .

-gd generate debugging info fordbx.

-gh use the heaptrc unit (seeUnit reference). (produces a report about heap usage after the program
exits)

-gl use the lineinfo unit (seeUnit reference). (produces file name/line number information if the
program exits due to an error.)

-gc generate checks for pointers. This must be used with the-gh command-line option. When this
options is enabled, it will verify that all pointer accesses are within the heap.

-kxxx passxxx to the linker.

-Oxxx optimize the compiler’s output;xxx can have one of the following values :

g optimize for size, try to generate smaller code.

G optimize for time, try to generate faster code (default).

r keep certain variables in registers (experimental, use with caution).

u Uncertain optimizations

1 Level 1 optimizations (quick optimizations).

2 Level 2 optimizations (-O1 plus some slower optimizations).

3 Level 3 optimizations (-O2 plus-Ou ).

Pn (Intel only) Specify processor:n can be one of

1 optimize for 386/486

2 optimize for Pentium/PentiumMMX (tm)

3 optimizations for PentiumPro/PII/Cyrix 6x86/K6 (tm)

The exact effect of these effects can be found in theProgrammers guide.

26

file:../units/units.html
file:../units/units.html
file:../prog/prog.html


CHAPTER 5. COMPILER CONFIGURATION

-oxxx Tells the compiler to usexxx as the name of the output file (executable). Only with programs.

-pg Generate profiler code forgprof. This will define the symbolFPC_PROFILE, which can be
used in conditional defines.

-s Tells the compiler not to call the assembler and linker. Instead, the compiler writes a script,
PPAS.BAT underDOS, or ppas.sh underLINUX , which can then be executed to produce an
executable. This can be used to speed up the compiling process or to debug the compiler’s
output.

-Txxx Specifies the target operating system.xxx can be one of the following:

• GO32V1 : DOS and version 1 of the DJ DELORIE extender (no longer maintained).

• GO32V2 : DOS and version 2 of the DJ DELORIE extender.

• LINUX : LINUX .

• OS2: OS/2 (2.x) using theEMXextender.

• WIN32 : WINDOWS 32 bit.

• SUNOS: SunOS/Solaris.

• BEOS : BeOS.

-uxxx Undefine the symbolxxx . This is the opposite of the-d option.

-Ur Generate release unit files. These files will not be recompiled, even when the sources are avail-
able. This is useful when making release distributions. This also overrides the-B option for
release mode units.

-Xx executable options. This tells the compiler what kind of executable should be generated. the
parameterx can be one of the following:

• c : (LINUX only) Link with the C library. You should only use this when you start to port
Free Pascal to another operating system.

• D : Link with dynamic libraries (defines theFPC_LINK_DYNAMICsymbol)

• s : Strip the symbols from the executable.

• S : Link with static units (defines theFPC_LINK_STATIC symbol)

• X : Link with smartlinked units (defines theFPC_LINK_SMARTsymbol)

Options concerning the sources (language options)
for more information on these options, see alsoProgrammers guide

-Rxxx Specifies what kind of assembler you use in yourasm assembler code blocks. Herexxx is
one of the following:

att asm blocks contain AT&T-style assembler. This is the default style.

intel asm blocks contain Intel-style assembler.

direct asm blocks should be copied as-is in the assembler, only replacing certain variables.
file.

-S2 Switch on Delphi 2 extensions (objfpc mode). This is different from-Sd (Delphi mode)
because some Free Pascal constructs are still available.

-Sa Include assert statements in compiled code. Omitting this option will cause assert statements to
be ignored.

27

file:../prog/prog.html


CHAPTER 5. COMPILER CONFIGURATION

-Sc Support C-style operators, i.e.*=, +=, /= and -= .

-Sd Tells the compiler to be Delphi compatible. This is more strict than the-S2 option, since some
fpc extensions are switched off.

-SeN The compiler stops after the N-th error. Normally, the compiler tries to continue compiling
after an error, until 50 errors are reached, or a fatal error is reached, and then it stops. With this
switch, the compiler will stop after the N-th error (if N is omitted, a default of 1 is assumed).

-Sg Support thelabel andgoto commands. By default these are not supported. You must also
specify this option if you use labels in assembler statements. (if you use theAT&T style
assember)

-Sh Use ansistrings by default for strings. If this keyword is specified, the compiler will interpret
thestring keyword as a ansistring. Otherwise it is supposed to be a short strings (TP style).

-Si SupportC++ style INLINE.

-Sm Support C-style macros.

-So Try to be Borland TP 7.0 compatible (no function overloading etc.).

-Sp Try to begpc (GNU pascal compiler) compatible.

-Ss The name of constructors must beinit , and the name of destructors should bedone .

-St Allow the static keyword in objects.

-Un Do not check the unit name. Normally, the unit name is the same as the filename. This option
allows both to be different.

-Us Compile a system unit. This option causes the compiler to define only some very basic types.

5.2 Using the configuration file

Using the configuration filefpc.cfg is an alternative to command line options. When a configuration
file is found, it is read, and the lines in it are treated like you typed them on the command line. They
are treated before the options that you type on the command line.

You can specify comments in the configuration file with the# sign. Everything from the# on will
be ignored.

The algorithm to determine which file is used as a configuration file is decribed in3.1on page18.

When the compiler has finished reading the configuration file, it continues to treat the command line
options.

One of the command-line options allows you to specify a second configuration file: Specifying@foo
on the command line will open filefoo, and read further options from there. When the compiler has
finished reading this file, it continues to process the command line.

The configuration file allows some kind of preprocessing. It understands the following directives,
which you should place on the first column of a line :

#IFDEF

#IFNDEF

#ELSE

#ENDIF

28



CHAPTER 5. COMPILER CONFIGURATION

#DEFINE

#UNDEF

#WRITE

#INCLUDE

#SECTION

They work the same way as their {$...} counterparts in Pascal. All the default defines used to com-
pile source code are also defined while processing the configuration file. For example, if the target
compiler is an intel 80x86 compatile linux platform, bothcpu86 andlinux will be defined while
interpreting the configuration file. For the possible default defines when compiling, consult Appendix
G of theProgrammers guide.

What follows is a description of the different directives.

#IFDEF
Syntax:

#IFDEF name

Lines following#IFDEF are skipped read if the keywordname following it is not defined.

They are read until the keywords#ELSEor #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFDEF VER0_99_5
-Fu/usr/lib/fpc/0.99.5/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.5/linuxunits will be added to the path if you’re compiling
with version 0.99.5 of the compiler.

#IFNDEF
Syntax:

#IFNDEF name

Lines following#IFNDEF are skipped read if the keywordname following it is defined.

They are read until the keywords#ELSEor #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFNDEF VER0_99_5
-Fu/usr/lib/fpc/0.99.6/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.6/linuxunits will be added to the path if you’re NOT com-
piling with version 0.99.5 of the compiler.

29

file:../prog/prog.html


CHAPTER 5. COMPILER CONFIGURATION

#ELSE
Syntax:

#ELSE

#ELSE can be specified after a#IFDEF or #IFNDEF directive as an alternative. Lines following
#ELSEare skipped read if the preceding#IFDEF or #IFNDEF was accepted.

They are skipped until the keyword#ENDIF is encountered, after which normal processing is re-
sumed.

Example :

#IFDEF VER0_99_5
-Fu/usr/lib/fpc/0.99.5/linuxunits
#ELSE
-Fu/usr/lib/fpc/0.99.6/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.5/linuxunits will be added to the path if you’re compiling
with version 0.99.5 of the compiler, otherwise/usr/lib/fpc/0.99.6/linuxunits will be added to the
path.

#ENDIF
Syntax:

#ENDIF

#ENDIF marks the end of a block that started with#IF(N)DEF , possibly with an#ELSE between
it.

#DEFINE
Syntax:

#DEFINE name

#DEFINE defines a new keyword. This has the same effect as a-dname command-line option.

#UNDEF
Syntax:

#UNDEF name

#UNDEFun-defines a keyword if it existed. This has the same effect as a-uname command-line
option.

#WRITE
Syntax:

30



CHAPTER 5. COMPILER CONFIGURATION

#WRITE Message Text

#WRITE writes Message Text to the screen. This can be useful to display warnings if certain
options are set.

Example:

#IFDEF DEBUG
#WRITE Setting debugging ON...
-g
#ENDIF

if DEBUGis defined, this will produce a line

Setting debugging ON...

and will then switch on debugging information in the compiler.

#INCLUDE
Syntax:

#INCLUDE filename

#INCLUDE instructs the compiler to read the contents offilename before continuing to process
options in the current file.

This can be useful if you want to have a particular configuration file for a project (or, underLINUX ,
in your home directory), but still want to have the global options that are set in a global configuration
file.

Example:

#IFDEF LINUX
#INCLUDE /etc/fpc.cfg

#ELSE
#IFDEF GO32V2

#INCLUDE c:\pp\bin\fpc.cfg
#ENDIF

#ENDIF

This will include/etc/fpc.cfg if you’re on a linux machine, and will includec:\pp\bin\fpc.cfg
on a dos machine.

#SECTION
Syntax:

#SECTION name

The#SECTIONdirective acts as a#IFDEF directive, only it doesn’t require an#ENDIF directive.
the special nameCOMMONalways exists, i.e. lines following#SECTION COMMONare always read.

31



CHAPTER 5. COMPILER CONFIGURATION

5.3 Variable substitution in paths

To avoid having to edit your configuration files too often, the compiler allows you to specify the
following variables in the paths that you feed to the compiler:

FPCVER is replaced by the compiler’s full version string.

FPCDATE is replaced by the compiler’s date.

FPCTARGET is replaced by the compiler’s target CPU (deprecated).

FPCCPU is also replaced by the compiler’s target CPU.

TARGET is replaced by the compiler’s target OS (deprecated).

FPCOS is replaced by the compiler’s target OS.

To have these variables subsituted, just insert them with a$ prepended, as follows:

-Fu/usr/lib/fpc/$FPCVER/rtl/$FPCOS

This is equivalent to

-Fu/usr/lib/fpc/0.99.12a/rtl/linux

If the compiler version is0.99.12a and the target os islinux .

These replacemens are valid on the command-line and also in the configuration file.

On the linux command-line, you must be careful to escape the$ since otherwise the shell will expand
the variable for you, which may have undesired effects.

32



Chapter 6

The IDE

The IDE (IntegratedDevelopmentEnvironment) provides a comfortable user interface to the com-
piler. It contains an editor with syntax highlighting, a debugger, symbol browser etc. The IDE is
a text-mode application which has the same look and feel on all supported operating systems. It is
modelled after the IDE of Turbo Pascal, so many people should feel comfortable using it.

Currently, the IDE is available forDOS, WINDOWS andLINUX .

6.1 First steps with the IDE

Starting the IDE
The IDE is started by entering the command:

fp

at the command line. It can also be started from a graphical user interface such as WINDOWS.

Remark: Under WINDOWS, it is possible to switch between windowed mode and full screen mode by pressing
ALT-ENTER).

IDE Command line options
When starting the IDE, command line options can be passed:

fp [-option] [-option] ... <file name> ...

Option is one of the following switches (the option letters are case insensitive):

-N (DOS only) Do not use long file names. WINDOWS 95 and later versions of WINDOWS provide
an interface to DOS applications to access long file names. The IDE uses this interface by
default to access files. Under certain circumstances, this can lead to problems. This switch
tells the IDE not to use the long filenames.

-Cfilename This option, followed by a filename, tells the IDE to read its options fromfilename.
There should be no whitespace between the file name and the-C .

-F use alternative graphic characters. This can be used to run the IDE onLINUX in an X-term or
through a telnet session.

33



CHAPTER 6. THE IDE

-R After starting the IDE, it changes automatically to the directory which was active when the IDE
exited the last time.

-S Disable the mouse. When this option is used, then the mouse is disabled, even if a mouse is
present.

-Tttyname (linux/unix only) Sends program output to ttyttyname . This is useful so one doesn’t
have to switch between program output and ide all the time.

The files given at the command line are loaded into edit windows automatically.

Remark: Under DOS/Win32, the first character of a command-line option can be a/ character instead of a-
character. So/S is equivalent to-S .

The IDE screen
After start up, the screen of the IDE can look like figure (6.1).

Figure 6.1: The IDE screen immediately after startup

At top of the screen themenu baris visible, at the bottom thestatus bar. The empty space between
them is called thedesktop.

The status bar shows the keyboard shortcuts for frequently used commands, and allows quick access
to these commands by clicking them with the mouse. At the right edge of the status bar, the current
amount of unused memory is displayed. This is only an indication, since the IDE tries to allocate
more memory from the operating system if it runs out of memory.

The menu provides access to all of the IDE’s functionality, and at the right edge of the menu, a clock
is displayed.

The IDE can be left by selecting"File|Exit" in the menu1 or by pressing ALT-X.

Remark: If a file fp.ans is found in the current directory, then it is loaded and used to paint the background.
This file should contain ANSI drawing commands to draw on a screen.

1"File|Exit" means select the item ’Exit’ in the menu ’File’.

34



CHAPTER 6. THE IDE

6.2 Navigating in the IDE

The IDE can be navigated both with the keyboard and with a mouse, if the system is equipped with
a mouse.

Using the keyboard
All functionality of the IDE is available through use of the keyboard.

• It is used for typing and navigating through the sources.

• Editing commands such as copying and pasting text.

• Moving and resizing windows.

• It can be used to access the menu, by pressing ALT and the appropriate highlighted menu
letter, or by pressing F10 and navigating through the menu with the arrow keys.

more information on the menu can be found in section6.4, page38

• Many commands in the IDE are bound to shortcuts, i.e. typing a special combination of keys
will execute a command immediately.

Remark:

• When working in aLINUX X-Term or through a telnet session, the key combination with ALT

may not be available. To remedy this, the CTRL-Z combination can be typed first. This means
that e.g. ALT-X can be replaced by CTRL-Z X.

• A complete reference of all keyboard shortcuts can be found in section6.14, page81.

Using the mouse
If the system is equipped with a mouse, it can be used to work with the IDE. The left button is used
to select menu items, press buttons, select text blocks etc.

The right mouse button is used to access the local menu, if available. Holding down the CTRL or
ALT key and clicking the right button will execute user defined functions, see section6.12, page77.

Remark:

1. Occasionally, the manual uses the term "drag the mouse". This means that the mouse is moved
while the left mouse button is being pressed.

2. The action of mouse buttons may be reversed, i.e. the actions of the left mouse button can be
assigned to the right mouse button and vice versa2. Throughout the manual, it is assumed that
the actions of the mouse buttons are not reversed.

3. The mouse is not always available, even if a mouse is installed:

• The IDE is running underLINUX through a telnet connection from a WINDOWS machine.

• The IDE is running underLINUX in an X-term under X-windows.

2See section6.12, page77 for more information on how to reverse the actions of the mouse buttons.

35



CHAPTER 6. THE IDE

Navigating in dialogs
Dialogs usually have a lot of elements in them such as buttons, edit fields, memo fields, list boxes
and so on. To activate one of these fields, it is sufficient to:

1. Click on the element with the mouse.

2. Press the TAB key till the focus reaches the mouse

3. Press the highlighted letter in the element’s label. If the focus is currently on an element that
allows to edit, then ALT should be pressed simultaneously with the highlighted letter. For a
button, the action associated with the button will then be executed.

Inside edit fields, list boxes, memos, navigation is carried out with the usual arrow key commands.

6.3 Windows

Nowadays, working with windowed applications should be no problem for most WINDOWS and
LINUX users. Nevertheless, the following section describes how the windows work in the Free Pascal
IDE, to allow efficient work with it.

Window basics
A common IDE window is displayed in figure (6.2).

Figure 6.2: A common IDE window

The window is surrounded by a so-calledframe, the white double line around the window.

At the top of the window 4 things are displayed:

• At the upper left corner of the window, aclose iconis shown. When clicked, the window will be
closed. It can be also closed by pressing ALT-F3 or selecting the menu item"Window|Close" .
All open windows can be closed by selecting the menu item"Window|Close all" .

• In the middle, the title of the window is displayed.

• Almost at the upper right corner, a number is visible. This number identifies the editor window,
and pressing ALT-NUMBER will jump to this window. Only the first 9 windows will get such
a number.

36



CHAPTER 6. THE IDE

• At the upper right corner, a small green arrow is visible. Clicking this arrow zooms the window
so it covers the whole desktop. Clicking this arrow on a zoomed window will restore old size
of the window. Pressing the key F5 has the same effect as clicking that arrow. The same effect
can be achieved with the menu item"Window|Zoom" . Windows and dialogs which aren’t
resizeable can’t be zoomed, either.

The right edge and bottom edges of a window contain scrollbars. They can be used to scroll the
window contents with the mouse. The arrows at the ends of the scrollbars can be clicked to scroll the
contents line by line. Clicking on the dotted area between the arrows and the cyan-coloured rectangle
will scroll the window’s content page by page. By dragging the rectangle the content can be scrolled
continuously.

The star and the numbers in the lower left corner of the window display information about the con-
tents of the window. They are explained in the section about the editor, see section6.5, page44.

Sizing and moving windows
A window can be moved and sized using the mouse and the keyboard: To move a window:

• using the mouse, click on the title bar and drag the window with the mouse.

• using the keyboard, go into the size/move mode by pressing CTRL-F5 or selecting the menu
item"Window|Size/Move" . . Using the cursor keys the window can be moved. The size/move
mode can be left by pressing ENTER. In this case, the window will keep its size and position.
Alternatively, pressing ESC will restore the old position.

To resize a window:

• using the mouse, click on the lower right corner of the window and drag it.

• using the keyboard, go into the size/move mode by pressing CTRL-F5 or selecting the menu
item "Window|Size/Move" . The window frame will be green to indicate that the IDE is in
size/move mode. By pressing shift and the cursor keys simultaneously, the window can be
resized. The size/move mode can be left by pressing ENTER. In this case, the window will
keep the new size. Pressing ESC will restore the old size.

Not all windows can be resized. This applies, for example, todialog windows(section6.3, page38).

A window can also be hidden. To hide a window, the CTRL-F6 key combination can be used, or
the"Window|Hide" menu may be selected. To restore a Hidden window, it is necessary to select it
from the window list. More information about the window list can be found in the next section.

Working with multiple windows
When working with larger projects, it is likely that multiple windows will appear on the desktop.
However, only one of these windows will be the active window, all other windows will be inactive.

An inactive window is identified by a grey frame. An inactive window can be made active in one of
several ways:

• using the mouse, activate a window by clicking on it.

• using the keyboard, pressing F6 will step trough all open windows. To activate the previously
activated window, SHIFT-F6 can be used.

• the menu item"Window|Next" can be used to activate the next window in the list of windows,
while Window|Previous will select the previous window.

37



CHAPTER 6. THE IDE

• If the window has a number in the upper right corner, it can be activated by pressing ALT-
<NUMBER>.

• Pressing ALT-0 will pop up a dialog with all available windows which allows a quick activation
of windows which don’t have a number.

The windows can be ordered and placed on the IDE desktop by zooming and resizing them with
the mouse or keyboard. This is a time-consuming task, and particularly difficult with the keyboard.
Instead, the menu items"Window|Tile" and"Window|Cascade" can be used:

Tile will divide whole desktop space evenly between all resizable windows.

Cascadeputs all windows in a cascaded position.

In very rare cases the screen of the IDE may be mixed up. In this case the whole IDE screen can be
refreshed by selecting the menu item"Window|Refresh display" .

Dialog windows
In many cases the IDE displays a dialog window to get user input. The main difference to normal
windows is that other windows cannot be activated while a dialog is active. Also the menu is not
accessible while in a dialog. This behaviour is calledmodal. To activate another window, the modal
window or dialog must be closed first.

A typical dialog window is shown in figure (6.3).

Figure 6.3: A typical dialog window

6.4 The Menu

The main menu (the gray bar at the top of the IDE) provides access to all the functionality of the
IDE. It also displays a clock, displaying the current time. The menu is always available, except when
a dialog is opened. If a dialog is opened, it must be closed first in order to access the menu.

In certain windows, a local menu is also available. The local menu will appear where the cursor is,
and provides additional commands that are context-sensitive.

38



CHAPTER 6. THE IDE

Accessing the menu
The menu can be accessed in a number of ways:

1. By using the mouse to select items. The mouse cursor should be located over the desired menu
item, and a left mouse click will then select it.

2. By pressing F10. This will switch the IDE focus to the menu. Use the arrow keys can then be
used to navigate in the menu, the ENTER key should be used to select items.

3. To access menu items directly, ALT-<HIGHLIGHTED MENU LETTER> can be used to select a
menu item. Afterwards submenu entries can be selected by pressing the highlighted letter, but
without ALT. E.g. ALT-S G is a fast way to display thegoto linedialog.

Every menu item is explained by a short text in the status bar.

When a local menu is available, it can be accessed by pressing the right mouse button or ALT-F10.

In the subsequent, all menu entries and their actions are described.

The File menu
The"File" menu contains all menu items that allow to load and save files, as well as to exit the IDE.

New Opens a new, empty editor window.

New from template Prompts for a template to be used, asks to fill in any parameters, and then starts
a new editor window with the template.

Open (F3) Presents a file selection dialog, and opens the selected file in a new editor window.

Save (F2) Saves the contents of the current edit window with the current filename. If the current
edit window does not yet have a filename, a dialog is presented to enter a filename.

Save asPresents a dialog in which a filename can be entered. The current window’s contents are
then saved to this new filename, and the filename is stored for further save actions.

Change dir Presents a dialog in which a directory can be selected. The current working directory is
then changed to the selected directory.

Command shell Executes a command shell. After the shell exited, the IDE resumes. Which com-
mand shell is executed depends on the system.

Exit (ALT-X) Exits the IDE. If any unsaved files are in the editor, the IDE will ask if these files
should be saved.

Under the"Exit" menu appear some filenames of recently used files. These entries can be used to
quickly reload these files in the editor.

The Edit menu
The "Edit" menu contains entries for accessing the clipboard, and undoing or redoing editing ac-
tions. Most of these functions have shortcut keys associated with them.

Undo (ALT-BKSP) Undo the last editing action. The editing actions are stored in a buffer, selecting
this mechanism will move backwards through this buffer, i.e. multiple undo levels are possible.
The selection is not preserved, though.

39



CHAPTER 6. THE IDE

Redo Redo the last action that was previously undone. Redo can redo multiple undone actions.

Cut (SHIFT-DEL) Copy the current selection to the clipboard and delete the selection from the
text. Any previous clipboard contents is lost after this action. After this action, the clipboard
contents can be pasted elsewhere in the text.

Copy (CTRL-INS) Copy the current selection to the clipboard. Any previous clipboard contents is
lost after this action. After this action, the clipboard contents can be pasted elsewhere in the
text.

Paste (SHIFT-INS) Insert the current clipboard contents in the text at the cursor position. The
clipboard contents remains as it was.

Clear (CTRL-DEL) Clears (i.e. deletes) the current selection.

Show clipboard Opens a window in which the current clipboard contents is shown.

When running an IDE under WINDOWS, the "Edit" menu has two additional entries. The IDE
maintains a separate clipboard which does not share its contents with the windows clipboard. To
access the Windows clipboard, the following two entries are also present:

Copy to Windows this will copy the selection to the Windows clipboard.

Paste from Windows this will insert the content of the windows clipboard (if it contains text) in the
edit window at the current cursor position.

The Search menu
The"Search" menu provides access to the search and replace dialogs, as well as access to the symbol
browser of the IDE.

Find (CTRL-Q F) Presents the search dialog. A search text can be entered, and when the dialog is
closed, the entered text is searched in the active window. If the text is found, it will be selected.

Replace (CTRL-Q A) Presents the search and replace dialog. After the dialog is closed, the search
text will be replaced by the replace text in the active window.

Search again (CTRL-L) Repeats the last search or search and replace action, using the same para-
meters.

Go to line number (ALT-G) Prompts for a line number, and then jumps to this line number.

When the program and units are compiled with browse information, then the following menu entries
are also enabled:

Find procedure Not yet implemented.

Objects Asks for the name of an object and opens a browse window for this object.

Modules Asks for the name of a module and opens a browse window for this object.

Globals Asks for the name of a global symbol and opens a browse window for this object.

Symbol Opens a window with all known symbols, so a symbol can be selected. After the symbol is
selected, a browse window for that symbol is opened.

40



CHAPTER 6. THE IDE

The Run menu
The"Run" menu contains all entries related to running a program,

Run (CTRL-F9) If the sources were modified, compiles the program. If the compile is successful,
the program is executed. If the primary file was set, then that is used to determine which
program to execute. See section6.4, page41 for more information on how to set the primary
file.

Step over (F8) Run the program till the next source line is reached. If any calls to procedures are
made, these will be executed completely as well.

Trace into (F7) Execute the current line. If the current line contains a call to another procedure, the
process will stop at the entry point of the called procedure.

Goto cursor (F4) Runs the program till the execution point matches the line where the cursor is.

Until return Runs the current procedure till it exits.

Parameters This menu item allows to enter parameters that will be passed on to the program when
it is being executed.

Program reset (CTRL-F2) if the program is being run or debugged, the debug session is aborted,
and the running program is killed.

The Compile menu
The"Compile" menu contains all entries related to compiling a program or unit.

Compile (ALT-F9) Compiles the contents of the active window, irrespective of the primary file
setting.

Make (F9) Compiles the contents of the active window, and any files that the unit or program de-
pends on and that were modified since the last compile. If the primary file was set, the primary
file is compiled instead.

Build Compiles the contents of the active window, and any files that the unit or program depends
on, whether they were modified or not. If the primary file was set, the primary file is compiled
instead.

Target Sets the target operating system for which should be compiled.

Primary file Sets the primary file. If set, any run or compile command will act on the primary file
instead of on the active window. The primary file need not be loaded in the IDE for this to
have effect.

Clear primary file Clears the primary file. After this command, any run or compile action will act
on the active window.

Information Displays some information about the current program.

Compiler messages(F12) Displays the compiler messages window. This window will display the
messages generated by the compiler during the last compile.

41



CHAPTER 6. THE IDE

The Debug menu
The"Debug" menu contains menu entries to aid in debugging a program, such as setting breakpoints
and watches.

Output

User screen (ALT-F5) Switches to the screen as it was last left by the running program.

Breakpoint (CTRL-F8) Sets a breakpoint at the current line. When debugging, program execution
will stop at this breakpoint.

Call stack (CTRL-F3) Shows the call stack. The call stack is the list of addresses (and filenames
and line numbers, if this information was compiled in) of procedures that are currently being
called by the running program.

Registers Shows the current content of the CPU registers.

Add watch (CTRL-F7) Add a watch. A watch is an expression that can be evaluated by the IDE
and will be shown in a special window. Usually this is the content of some variable.

Watches Shows the current list of watches in a separate window.

Breakpoint list Shows the current list of breakpoints in a separate window.

GDB window Shows the GDB debugger console. This can be used to interact with the debugger
directly; here arbitrary GDB commands can be typed and the result will be shown in the
window.

The Tools menu
The"Tools" menu defines some standard tools. If new tools are defined by the user, they are appen-
ded to this menu as well.

Messages(F11) Show the messages window. This window contains the output from one of the
tools. For more information, see section6.10, page57.

Goto next (ALT-F8) Goto next message.

Goto previous (ALT-F7) Goto previous message

Grep (SHIFT-F2) Prompts for a regular expression and options to be given to grep, and then ex-
ecutesgrep with the given expression and options. For this to work, thegrep program must
be installed on the system, and be in a directory that is in thePATH. For more information, see
section4, page57.

Calculator Displays the calculator. For more information, see section4, page58

Ascii table Displays theASCII table. For more information, see section4, page58

The Options menu
The "Options" menu is the entry point for all dialogs that are used to set options for compiler and
IDE, as well as the user preferences.

Mode Presents a dialog to set the current mode of the compiler. The current mode is shown at the
right of the menu entry. For more information, see section6.11, page73.

42



CHAPTER 6. THE IDE

Compiler Presents a dialog that can be used to set common compiler options. These options will be
used when compiling a program or unit.

Memory sizes Presents a dialog where the stack size and the heap size for the program can be set.
These options will be used when compiling a program.

Linker Presents a dialog where some linker options can be set. These options will be used when a
program or library is compiled.

Debugger Presents a dialog where the debugging options can be stored. These options are used
when compiling units or programs. Note that the debugger will not work unless debugging
information is generated in the program.

Directories Presents a dialog where the various directories needed by the compiler can be set. These
directories will be used when a program or unit is compiled.

Browser Presents a dialog where the browser options can be set. The browser options affect the
behaviour of the symbol browser of the IDE.

Tools Presents a dialog to configure the tools menu. For more information, see section4, page59.

Environment Presents a dialog to configure the behaviour of the IDE. A sub menu is presented with
the various aspects of the IDE:

PreferencesGeneral preferences, such as whether to save files or not, and which files should
be saved. The video mode can also be set here.

Editor Controls various aspects of the edit windows.

CodeComplete Used to set the words which can be automatically completed when typing in
the editor windows.

CodetemplatesUsed to define code templates, which can be inserted in an edit window.

Desktop Used to control the behaviour of the desktop, i.e. several features can be switched
on or off.

Mouse Can be used to control the actions of the mouse, and to assign commands to various
mouse actions.

Startup Not yet implemented.

Colors Here the various colors used in the IDE and the editor windows can be set.

Open Presents a dialog in which a file with editor preferences can be selected. after the dialog is
closed, the preferences file will be read and the preferences will be applied.

Save Save the current options in the default file.

Save asSaves the current options in an alternate file. A file selection dialog box will be presented
in which the alternate settings file can be entered.

Please note that options are not saved automatically, they should be saved explicitly with the"Options|-
Save" command.

The Window menu
The "Window" menu provides access to some window functions. More information on all these
functions can be found in section6.3, page36

Tile Tiles all opened windows on the desktop.

43



CHAPTER 6. THE IDE

CascadeCascades all opened windows on the desktop.

Close all Close all opened windows.

Size/move (CTRL-F5) Put the IDE in Size/move modus; after this command the active window can
be moved and resized using the arrow keys.

Zoom (F5) Zooms or unzooms the current window.

Next (F6) Activates the next window in the window list.

Previous (SHIFT-F6) Activates the previous window in the window list.

Hide (CTRL-F6) Hides the active window.

Close (ALT-F3) Closes the active window.

List (ALT-0) Shows the list of opened windows. From there a window can be activated, closed,
shown and hidden.

Refresh display Redraws the screen.

The Help menu
The"Help" menu provides entry points to all the help functionality of the IDE, as well as the entry
to customize the help system.

Contents Shows the help table of contents

Index (SHIFT-F1) Jumps to the help Index.

Topic search (CTRL-F1) Jumps to the topic associated with the currently highlighted text.

Previous topic (ALT-F1) Jumps to the previously visited topic.

Using help Displays help on using the help system.

Files Allows to configure the help menu. With this menu item, help files can be added to the help
system.

About Displays information about the IDE. See section6.13, page81 for more information.

6.5 Editing text

In this section, the basics of editing (source) text are explained. The IDE works like many other text
editors in this respect, so mainly the distinguishing points of the IDE will be explained.

Insert modes
Standard, the IDE is in insert mode. This means that any text that is typed will be inserted before text
that is present after the cursor.

In overwrite mode, any text that is typed will replace existing text.

When in insert mode, the cursor is a flat blinking line. If the IDE is in overwrite, the cursor is a
cube with the height of one line. Switching between insert mode or overwrite mode happens with
the INSERTkey or with the CTRL-V key.

44



CHAPTER 6. THE IDE

Blocks
The IDE handles selected text just as the Turbo Pascal IDE handles it. This is slightly different from
the way e.g. Windows applications handle selected text.

Text can be selected in 3 ways:

1. Using the mouse, dragging the mouse over existing text selects it.

2. Using the keyboard, press CTRL-K B to mark the beginning of the selected text, and CTRL-K
K to mark the end of the selected text.

3. Using the keyboard, hold the SHIFT key depressed while navigating with the cursor keys.

There are also some special select commands:

1. The current line can be selected using CTRL-K L.

2. The current word can be selected using CTRL-K T.

In the Free Pascal IDE, selected text is persistent. After selecting a range of text, the cursor can be
moved, and the selection will not be destroyed; hence the term ’block’ is more appropriate for the
selection, and will be used henceforth...

Several commands can be executed on a block:

• Move the block to the cursor location (CTRL-K V).

• Copy the block to the cursor location (CTRL-K C).

• Delete the block (CTRL-K Y).

• Write the block to a file (CTRL-K W).

• Read the contents of a file into a block (CTRL-K R). If there is already a block, this block is
not replaced by this command. The file is inserted at the current cursor position, and then the
inserted text is selected.

• Indent a block (CTRL-K I).

• Undent a block (CTRL-K U).

• Print the block contents (CTRL-K P).

When searching and replacing, the search can be restricted to the block contents.

Setting bookmarks
The IDE provides a feature which allows to set a bookmark at the current cursor position. Later, the
cursor can be returned to this position by pressing a keyboard shortcut.

Up to 9 bookmarks per source file can be set up, they are set by CTRL-K <NUMBER> (where number
is the number of the mark). To go to a previously set bookmark, press CTRL-Q <NUMBER>.

Remark: Currently, the bookmarks are not stored if the IDE is left. This may change in future implementations
of the IDE.

45



CHAPTER 6. THE IDE

Jumping to a source line
It is possible to go directly to a specific source line. To do this, open thegoto linedialog via the
"Search|Goto line" menu.

In the dialog that appears, the line-number the IDE should jump to can be entered. The goto line
dialog is shown in figure (6.4).

Figure 6.4: The goto line dialog.

Syntax highlighting
The IDE is capable of syntax highlighting, i.e. the color of certain Pascal elements can be set. As
text is entered in an editor window, the IDE will try to recognise the elements, and set the color of
the text accordingly.

The syntax highlighting can be customized in the colors preferences dialog, using the menu option
"Options|Environment|Colors" . In the colors dialog, the group "Syntax" must be selected. The
item list will then display the various syntactical elements that can be colored:

Whitespace The empty text between words. Remark that for whitespace, only the background color
will be used.

Comments All styles of comments in Free Pascal.

Reserved wordsAll reserved words of Free Pascal. (see alsoReference guide).

Strings Constant string expressions.

Numbers Numbers in decimal notation.

Hex numbers Numbers in hexadecimal notation.

Assembler Any assembler blocks.

Symbols Recognised symbols (variables, types)

Directives Compiler directives.

Tabs Tab characters in the source can be given a different color than other whitespace.

The editor uses some default settings, but experimentation is the best way to find a fitting color
scheme. A good color scheme helps detecting errors in sources, since errors will result in wrong
syntax highlighting.

46

file:../ref/ref.html


CHAPTER 6. THE IDE

Code Completion
Code completion means the editor will try to guess the text as it is being typed. It does this by
checking what text is typed, and as soon as the typed text can be used to identify a keyword in a list
of keywords, the keyword will be presented in a small colored box under the typed text. Pressing the
ENTER key will complete the word in the text.

There is no code completion yet for filling in function arguments, choosing object methods as in e.g.
Delphi.

Code completion can be customized in the Code completion dialog, reachable through the menu
option"Options|Preferences|Codecompletion". The list of keywords that can be completed can be
maintained here. The code completion dialog is shown in figure (6.5).

Figure 6.5: The code completion dialog.

The dialog shows the currently defined keywords that will be completed in alphabetical order. The
following buttons are available:

Ok Saves all changes and closes the dialog.

Edit Pops up a dialog that allows to edit the currently highlighted keyword.

New Pops up a dialog that allows to enter a new keyword which will be added to the list.

Delete Deletes the currently highlighted keyword from the list

Cancel Discards all changes and closes the dialog.

All keywords are saved and are available the next time the IDE is started. Duplicate names are not
allowed. If an attempt is made to add a duplicate name to the list, an error will follow.

Code Templates
Code templates are a way to insert large pieces of code at once. Each code templates is identified by
a unique name. This name can be used to insert the associated piece of code in the text.

For example, the nameifthen could be associated to the following piece of code:

47



CHAPTER 6. THE IDE

If | Then
begin
end

A code template can be inserted by typing its name, and pressing CTRL-J when the cursor is posi-
tioned right after the template name.

If there is no template name before the cursor, a dialog will pop up to allow selection of a template.

If a vertical bar (|) is present in the code template, the cursor is positioned on it, and the vertical bar
is deleted. In the above example, the cursor would be positioned between theif andthen , ready
to type an expression.

Code templates can be added and edited in the code templates dialog, reachable via the menu option
"Options|Preferences|Codetemplates". The code templates dialog is shown in figure (6.6).

Figure 6.6: The code templates dialog.

The top listbox in the code templates dialog shows the names of all known templates. The bottom half
of the dialog shows the text associated with the currently highlighted code template. The following
buttons are available:

Ok Saves all changes and closes the dialog.

Edit Pops up a dialog that allows to edit the currently highlighted code template. Both the name and
text can be edited.

New Pops up a dialog that allows to enter a new code template which will be added to the list. A
name must be entered for the new template.

Delete Deletes the currently highlighted code template from the list

Cancel Discards all changes and closes the dialog.

48



CHAPTER 6. THE IDE

All templates are saved and are available the next time the IDE is started.

Remark: Duplicates are not allowed. If an attempt is made to add a duplicate name to the list, an error will
occur.

6.6 Searching and replacing

The IDE allows to search for text in the active editor window. To search for text, one of the following
can be done:

1. Select"Search|Find" in the menu.

2. Press CTRL-Q F.

After that, the dialog shown in figure (6.7) will pop up, and the following options can be entered

Figure 6.7: The search dialog.

Text to find The text to be searched for. If a block was active when the dialog was started, the first
line of this block is proposed.

Case sensitiveWhen checked, the search is case sensitive.

Whole words only When checked, the search text must appear in the text as a complete word.

Direction The direction in which the search must be conducted, starting from the specified origin.

Scope Specifies if the search should be on the whole file, or just the selected text.

Origin Specifies if the search should start from the cursor position or the start of the scope.

After the dialog has closed, the search is performed using the given options.

A search can be repeated (using the same options) in one of 2 ways:

1. Select"Search|Find again" from the menu.

2. Press CTRL-L.

It is also possible to replace occurrences of a text with another text. This can be done in a similar
manner to searching for a text:

49



CHAPTER 6. THE IDE

1. Select"Search|Replace" from the menu.

2. Press CTRL-Q A.

A dialog, similar to the search dialog will pop up, as shown in figure (6.8).

Figure 6.8: The replace dialog.

In this dialog, in addition to the things that can be filled in in the search dialog, the following things
can be entered:

New text Text by which found text will be replaced.

Prompt on replace Before a replacement is made, the IDE will ask for confirmation.

If the dialog is closed with the ’OK’ button, only the next occurrence of the the search text will be
replaced. If the dialog is closed with the ’Change All’ button, all occurrences of the search text will
be replaced.

6.7 The symbol browser

The symbol browser allows to find all occurrences of a symbol. A symbol can be a variable, type,
procedure or constant that occurs in the program or unit sources.

To enable the symbol browser, the program or unit must be compiled with browser information. This
can be done by setting the browser information options in the compiler options dialog.

The IDE allows to browse several types of symbols:

procedures Allows to quickly jump to a procedure definition or implementation.

Objects Allows to quickly browse an object.

Modules Allows to browse a module.

Globals Allows to browse any global symbol.

Arbitrary symbol Allows to browse an arbitrary symbol.

50



CHAPTER 6. THE IDE

In all cases, first a symbol to be browsed must be selected. After that, a browse window appears. In
the browse window, all locations where the symbol was encountered are shown. Selecting a location
and pressing the space bar will cause the editor to jump to that location; the line containing the
symbol will be highlighted.

If the location is in a source file that is not yet displayed, a new window will be opened with the
source file loaded.

After the desired location was reached, the browser window can be closed with the usual commands.

The behaviour of the browser can be customized with the browser options dialog, using the"Op-
tions|Browser" menu. The browser options dialog looks like figure (6.9).

Figure 6.9: The browser options dialog.

The following options can be set in the browser options dialog:

Symbols Here the types of symbols displayed in the browser can be selected:

Labels labels are shown.

Constants Constants are shown.

Types Types are shown.

Variables Variables are shown.

Procedures Procedures are shown.

Inherited

Sub-browsing Specifies what the browser should do when displaying the members of a complex
symbol such as a record or class:

New browser The members are shown in a new browser window.

Replace current The contents of the current window are replaced with the members of the
selected complex symbol.

Preferred pane Specifies what pane is shown in the browser when it is initially opened:

scope

Reference

51



CHAPTER 6. THE IDE

Display Determines how the browser should display the symbols:

Qualified symbols

Sort always sorts the symbols in the browser window.

6.8 Running programs

A compiled program can be run straight from the IDE. This can be done in one of several ways:

1. select the"Run|Run" menu, or

2. press CTRL-F9.

If command-line parameters should be passed to the program, then these can be set through the
"Run|Parameters" menu. The program parameters dialog looks like figure (6.10).

Figure 6.10: The program parameters dialog.

Once the program started, it will continue to run, until

1. the program quits normally,

2. an error happens,

3. a breakpoint is encountered or

4. the program is reset by the user.

The last alternative is only possible if the program is compiled with debug information.

Alternatively, it is possible to position the cursor somewhere in a source file, and run the program till
the execution reaches the source-line where the cursor is located. This can be done by

1. selecting"Run|Goto Cursor" in the menu,

2. pressing F4.

Again, this is only possible if the program was compiled with debug information.

The program can also executed line by line. Pressing F8 will execute the next line of the program.
If the program wasn’t started yet, it is started. Repeatedly pressing F8 will execute line by line of
the program, and the IDE will show the line to be executed in an editor window. If somewhere in
the code a call occurs to a subroutine, then pressing F8 will cause the whole routine to be executed
before control returns to the IDE. If the code of the subroutine should be stepped through as well,
then F7 should be used instead. Using F7 will cause the IDE to execute line by line of any subroutine
that is encountered.

If a subroutine is being stepped through, then the"Run|Until return" menu will execute the program
till the current subroutine ends.

If the program should be stopped before it quits by itself, then this can be done by

52



CHAPTER 6. THE IDE

1. selecting"Run|Program reset" from the menu, or

2. pressing CTRL-F2.

The running program will then be aborted.

6.9 Debugging programs

To debug a program, it must be compiled with debug information. Compiling a program with debug
information allows to:

1. Execute the program line by line.

2. Run the program till a certain point (a breakpoint)

3. Inspect the contents of variables or memory locations while the program is running.

Using breakpoints
Breakpoints will cause a running program to stop when the execution reaches the line where the
breakpoint was set. At that moment, control is returned to the IDE, and it is possible to continue
execution.

To set a breakpoint on the current source line, use the"Debug|Breakpoint" menu entry, or press
CTRL-F8.

A list of current breakpoints can be obtained through the"Debug|Breakpoint list" menu. The
breakpoint list window is shown in figure (6.11).

Figure 6.11: The breakpoint list window

In the breakpoint list window, the following things can be done:

New Shows the breakpoint property dialog where the properties for a new breakpoint can be entered.

Edit Shows the breakpoint property dialog where the properties of the highlighted breakpoint can
be changed.

Delete Deletes the highlighted breakpoint.

The dialog can be closed with the ’Close’ button. The breakpoint properties dialog is shown in figure
(6.12)

The following properties can be set:

53



CHAPTER 6. THE IDE

Figure 6.12: The breakpoint properties dialog

type function function breakpoint. The program will stop when the function with the given name
is reached.

file-line Source line breakpoint. The program will stop when the source file with given name
and line is reached;

watch Expression breakpoint. An expression may be entered, and the program will stop as
soon as the expression changes.

awatch (access watch) Expression breakpoint. An expression that references a memory loc-
ation may be entered, and the program will stop as soon as the memory indicated by the
expression is accessed.

rwatch (read watch) Expression breakpoint. An expression that references a memory loca-
tion may be entered, and the program will stop as soon as the memory indicated by the
expression is read.

name Name of the function or file where to stop.

line Line number in the file where to stop. Only for breakpoints of type file-line.

Conditions Here an expression can be entered which must evaluateTrue for the program to stop
at the breakpoint. The expressions that can be entered must be valid GDB expressions.

Ignore count The number of times the breakpoint will be ignored before the program stops;

Remark:

1. Because the IDE uses GDB to do its debugging, it is necessary to enter all expressions in
uppercaseon FREEBSD.

2. Expressions that reference memory locations should be no longer than 16 bytes onLINUX or
go32v2 on an Intel processor, since the Intel processor’s debug registers are used to monitor
these locations.

3. Memory location watches will not function on Win32 unless a special patch is applied.

54



CHAPTER 6. THE IDE

Using watches
When debugging information is compiled in the program, watches can be used. Watches are expres-
sions which can be evaluated by the IDE and shown in a separate window. When program execution
stops (e.g. at a breakpoint) all watches will be evaluated and their current values will be shown.

Setting a new watch can be done with the"Debug|Add watch" menu command or by pressing
CTRL-F7. When this is done, the watch property dialog appears, and a new expression can be
entered. The watch property dialog is shown in figure (6.13).

Figure 6.13: The watch property dialog

In the dialog, the expression can be entered, any possible previous value and current value are shown.

Remark: Because the IDE uses GDB to do it’s debugging, it is necessary to enter all expressions inuppercase
in FREEBSD.

A list of watches and their present value is available in the watches window, which can be opened
with the"Debug|Watches" menu. The watch list window is shown in figure (6.11).

Figure 6.14: The watch list window.

Pressing ENTER or the space bar will show the watch property dialog for the currently highlighted
watch in the watches window.

The list of watches is updated whenever the IDE resumes control when debugging a program.

The call stack
The call stack helps in showing the program flow. It shows the list of procedures that are being called
at this moment, in reverse order. The call stack window can be shown using the"Debug|Call Stack"

55



CHAPTER 6. THE IDE

It will show the address or procedure name of all currently active procedures with their filename and
addresses. If parameters were passed they will be shown as well. The call stack is shown in figure
(6.15).

Figure 6.15: The call stack window.

By pressing the space bar in the call stack window, the line corresponding to the call will be high-
lighted in the edit window.

The GDB window
The GDB window provides direct interaction with the GDB debugger. In it, GDB commands can be
typed as they would be typed in GDB. The response of GDB will be shown in the window.

Some more information on using GDB can be found in section10.2, page102, but the final reference
is of course the GDB manual itself3. The GDB window is shown in figure (6.16).

Figure 6.16: The GDB window

3Available from the Free Software Foundation website.

56



CHAPTER 6. THE IDE

6.10 Using Tools

The tools menu provides easy access to external tools. It also has three pre-defined tools for program-
mers: an ASCII table, a grep tool and a calculator. The output of the external tools can be accessed
through this menu as well.

The messages window
The output of the external utilities is redirected by the IDE and it will be displayed in the messages
window. The messages window is displayed automatically, if an external tool was run. The messages
window can be also displayed manually by the selecting the menu item"Tools|Messages"or by
pressing the key F11. The messages window is shown in figure (6.17).

Figure 6.17: The messages window

If the output of the tool contains filenames and line numbers, the messages window can be used to
navigate the source as in a browse window:

1. Pressing ENTER or double clicking the output line will jump to the specified source line and
close the messages window.

2. Pressing the space bar will jump to the specified source line, but will leave the messages
window open, with the focus on it. This allows to quickly select another message line with the
arrow keys and jump to another location in the sources.

The algorithm which extracts the file names and line numbers from the tool output is quite sophistic-
ated, but in some cases it may fail4.

Grep
One external tool in the Tools menu is already predefined: a menu item to call thegrep utility
("Tools|Grep" or SHIFT-F2). Grep searches for a given string in files and returns the lines which
contain the string. The search string can be even a regular expression. For this menu item to work,
thegrep program must be installed, since it does not come with Free Pascal.

The messages window displayed in figure (6.17) in the previous section shows the output of a typical
grep session. The messages window can be used in combination withgrep to find special occur-
rences in the text.

Grep supports regular expressions. A regular expression is a string with special characters which
describe a whole class of expressions. The command line inDOS or LINUX have limited support
for regular expressions: enteringls *.pas (or dir *.pas ) to get a list of all Pascal files in a
directory. *.pas is something similar to a regular expression. It uses a wildcard to describe a whole
class of strings: those which end on ".pas". Regular expressions offer much more: for example
[A-Z][0-9]+ describes all strings which begin with a upper case letter followed by one or more
digits.

4Suggestions for improvement, or better yet, patches that improve the algorithm, are always welcome.

57



CHAPTER 6. THE IDE

It is outside the scope of this manual to describe regular expressions in great detail. Users of aLINUX

system can get more information on grep usingman grep on the command-line.

The ASCII table
The tools menu provides also an ASCII table ("Tools|Ascii table" ), The ASCII table can be used to
look up ASCII codes as well as inserting characters into the window which was active when invoking
the table. To get the ASCII code of a char move the cursor on this char or click with the mouse on it.
To insert a char into an editor window either:

1. using the mouse, double click it,

2. using the keyboard, press ENTER while the cursor is on it.

This is especially useful for pasting graphical characters in a constant string.

The ASCII table remains active till another window is explicitly activated, thus multiple characters
can be inserted at once. The ASCII table is shown in figure (6.18).

Figure 6.18: The ASCII table

The calculator
The calculator allows to do some quick calculations. It is a simple calculator, since it does not take
care of operator precedence, and bracketing of operations is not (yet) supported.

The result of the calculations can be pasted into the text using the CTRL-ENTER keystroke. The
calculator dialog is shown in figure (6.19).

The calculator supports all basic mathematical operations such as addition, subtraction, division and
multiplication. They are summarised in table (6.1).

But also more sophisticated mathematical operations such as exponentiation and logarithms are sup-
ported. The available mathematical calculations are shown in table (6.2).

58



CHAPTER 6. THE IDE

Figure 6.19: The calculator dialog

Table 6.1: Advanced calculator commands

Operation Button Key
Add two numbers + +
Subtract two numbers
Multiply two numbers * *
Divide two numbers / /
Delete the last typed digit <- BACKSPACE

Delete the display C C
Change the sign +
Do per cent calculation % %
Get result of operation = ENTER

Like many calculators, the calculator in the IDE also supports storing a single value in memory, and
several operations can be done on this memory value. The available operations are listed in table
(6.3)

Adding new tools
The tools menu can be extended with any external program which is command-line oriented. The
output of such a program will be caught and displayed in the messages window.

Adding a tool to the tools menu can be done using the"Options|Tools" menu. This will display the
tools dialog. The tools dialog is shown in figure (6.20).

In the tools dialog, the following actions are available:

New Shows the tool properties dialog where the properties of a new tool can be entered.

Edit Shows the tool properties dialog where the properties of the highlighted tool can be edited.

59



CHAPTER 6. THE IDE

Table 6.2: Advanced calculator commands

Operation Button Key
Calculate power xˆy
Calculate the inverse value 1/x
Calculate the square root sqr
Calculate the natural logarithm log
Square the display contents xˆ2
.

Table 6.3: Advanced calculator commands

Operation Button Key
Add the displayed number to the memory M+
Subtract the displayed number from the memory M-
Move the memory contents to the display M->
Move the display contents to the memory M<-
Exchange display and memory contents M<->

Delete Removes the currently highlighted tool.

Cancel Discards all changes and closes the dialog.

OK Saves all changes and closes the dialog.

The definitions of the tools are written in the desktop configuration file, so unless auto-saving of the
desktop file is enabled, the desktop file should be saved explicitly after the dialog is closed.

Meta parameters
When specifying the command line for the called tool, meta parameters can be used. Meta parameters
are variables and and they are replaced by their contents before passing the command line to the tool.

$CAP Captures the output of the tool.

$CAP_MSG Captures the output of the tool and puts it in the messages window.

$CAP_EDIT Captures the output of the tool and puts it in a separate editor window.

$COL Replaced by the column of the cursor in the active editor window. If there is no active window
or the active window is a dialog, then it is replaced by 0.

$CONFIG Replaced by the complete filename of the current configuration file.

$DIR() Replaced by the full directory of the filename argument, including trailing directory separ-
ator. e.g.

$DIR(’d:\data\myfile.pas’)

would returnd:\data\ .

$DRIVE() Replaced by the drive letter of the filename argument. e.g.

60



CHAPTER 6. THE IDE

Figure 6.20: The tools configuration dialog

$DRIVE(’d:\data\myfile.pas’)

would returnd:.

$EDNAME Replaced by the complete file name of the file in the active edit window. If there is no
active edit window, this is an empty string.

$EXENAME Replaced by the executable name that would be created if the make command was
used. (i.e. from the ’Primary File’ setting or the active edit window).

$EXT() Replaced by the extension of the filename argument. The extension includes the dot. e.g.

$EXT(’d:\data\myfile.pas’)

would return.pas.

$LINE Replaced by the line number of the cursor in the active edit window. If no edit window is
present or active, this is 0.

$NAME() Replaced by the name part (excluding extension and dot) of the filename argument. e.g.

$NAME(’d:\data\myfile.pas’)

would returnmyfile.

$NAMEEXT() Replaced by the name and extension part of the filename argument. e.g.

$NAMEEXT(’d:\data\myfile.pas’)

would returnmyfile.pas.

$NOSWAP Does nothing in the IDE, it is provided for compatibility with Turbo Pascal only.

$PROMPT() Prompt displays a dialog bow that allows editing of all arguments that come after it.
Arguments that appear before the$PROMPTkeyword are not presented for editing.

If a (optional) filename argument is present,$PROMPT() will load a dialog description from
the filename argument, e.g.

61



CHAPTER 6. THE IDE

$PROMPT(cvsco.tdf)

would parse the filecvsco.tdf, construct a dialog with it and display it. After the dialog closed,
the information entered by the user is used to construct the tool command line.

See section4, page62 for more information on how to create a dialog description.

$SAVE Before executing the command, the active editor window is saved, even if it is not modified.

$SAVE_ALL Before executing the command, all unsaved editor files are saved without prompting.

$SAVE_CUR Before executing the command the contents of the active editor window are saved
without prompting if they are modified.

$SAVE_PROMPT Before executing the command, a dialog is displayed asking whether any un-
saved files should be saved before executing the command.

$WRITEMSG() Writes the parsed tool output information to a file with name as in the argument.

Building a command line dialog box
When defining a tool, it is possible to show a dialog to the user, asking for additional arguments,
using the$PROMPT(filename) command-macro. Free Pascal comes with some dialogs, such as
a ’grep’ dialog, a ’cvs checkout’ dialog and a ’cvs check in’ dialog. The files for these dialogs are in
the binary directory and have an extension.tdf.

In this section, the file format for the dialog description file is explained. The format of this file
resembles a windows.INI file, where each section in the file describes an element (or control) in the
dialog. AnOKand anCancel button will be added to the bottom of the dialog, so these should not
be specified in the dialog definition.

A special section is theMain section. It describes how the result of the dialog will be passed on the
command-line, and the total size of the dialog.

Remark: Keywords that contain a string value, should have the string value enclosed in double quotes as in

Title="Dialog title"

TheMain section should contain the following keywords:

Title The title of the dialog. This will appear in the frame title of the dialog. The string should be
enclosed in quotes.

Size The size of the dialog, this is formatted as(Cols,Rows) , so

Size=(59,9)

means the dialog is 59 characters wide, and 9 lines high. This size does not include the border
of the dialog.

CommandLine specifies how the command-line will be passed to the program, based on the entries
made in the dialog. The text typed here will be passed on after replacing some control place-
holders with their values.

A control placeholder is the name of some control in the dialog, enclosed in percent (%) char-
acters. The name of the control will be replaced with the text, associated with the control.
Consider the following example:

CommandLine="-n %l% %v% %i% %w% %searchstr% %filemask%"

62



CHAPTER 6. THE IDE

Here the values associated with the controls namedl, i, v, w and searchstr and
filemask will be inserted in the command-line string.

Default The name of the control that is the default control, i.e. the control that has the focus when
the dialog is opened.

The following is an example of a valid main section:

[Main]
Title="GNU Grep"
Size=(56,9)
CommandLine="-n %l% %v% %i% %w% %searchstr% %filemask%"
Default="searchstr"

After theMain section, a section must be specified for each control that should appear on the dialog.
Each section has the name of the control it describes, as in the following example:

[CaseSensitive]
Type=CheckBox
Name="~C~ase sensitive"
Origin=(2,6)
Size=(25,1)
Default=On
On="-i"

Each control section must have at least the following keywords associated with it:

Type The type of control. Possible values are:

Label A plain text label which will be shown on the dialog. A control can be linked to this
label, so it will be focused when the user presses the highlighted letter in the label caption
(if any).

InputLine An edit field where a text can be entered.

CheckBox A Checkbox which can be in a on or off state.

Origin Specifies where the control should be located in the dialog. The origin is specified as
(left,Top) and the top-left corned of the dialog has coordinate(1,1) (not counting the
frame).

Size Specifies the size of the control, which should be specified as(Cols,Rows) .

Each control has some specific keywords associated with it; they will be described below.

A label (Type=Label ) has the following extra keywords associated with it:

Text the text displayed in the label. If one of the letters should be highlighted so it can be used as a
shortcut, then it should be enclosed in tilde characters (˜), e.g. in

Text="~T~ext to find"

TheT will be highlighted.

Link here the name of a control in the dialog may be specified. If specified, pressing the label’s
highlighted letter in combination with the ALT key will put the focus on the control specified
here.

63



CHAPTER 6. THE IDE

A label does not contribute to the text of the command-line, it is for informational and navigational
purposes only. The following is an example of a label description section:

[label2]
Type=Label
Origin=(2,3)
Size=(22,1)
Text="File ~m~ask"
Link="filemask"

An edit control (Type=InputLine ) allows to enter arbitrary text. The text of the edit control will
be pasted in the command-line if it is referenced there. The following keyword can be specified in a
inputline control section:

Value here a standard value (text) for the edit control can be specified. This value will be filled in
when the dialog appears.

The following is an example of a input line section:

[filemask]
Type=InputLine
Origin=(2,4)
Size=(22,1)
Value="*.pas *.pp *.inc"

A combo-box control (Type=CheckBox ) presents a checkbox which can be in one of two states,
on or off . With each of these states, a value can be associated which will be passed on to the
command-line. The following keywords can appear in a checkbox type section:

Name the text that appears after the checkbox. If there is a highlighted letter in it, this letter can be
used to set or unset the checkbox using the ALT-letter combination.

Default specifies whether the checkbox is checked or not when the dialog appears (valueson or
off )

On the text associated with this checkbox if it is in the checked state.

Off the text associated with this checkbox if it is in the unchecked state.

The following is a example of a valid checkbox description:

[i]
Type=CheckBox
Name="~C~ase sensitive"
Origin=(2,6)
Size=(25,1)
Default=On
On="-i"

If the checkbox is checked, then the value-i will be added on the command-line of the tool. If it is
unchecked, no value will be added.

64



CHAPTER 6. THE IDE

6.11 Project management and compiler options

Project management in Pascal is much easier than with C. The compiler knows from the source which
units, sources etc. it needs. So the Free Pascal IDE does not need a full featured project manager
like some C development environments offer, nevertheless there are some settings in the IDE which
apply to projects.

The primary file
Without a primary file the IDE compiles/runs the source of the active window when a program is
started. If a primary file is specified, the IDE compiles/runs always this source, even if another
source window is active. With the menu item"Compile|Primary file..." a file dialog can be opened
where the primary file can be selected. Only the menu item"Compile|Compile" compiles still the
active window, this is useful if a large project is being edited, and only the syntax of the current
source should be checked.

The menu item"Compiler|Clear primary file" restores the default behaviour of the IDE, i.e. the
’compile’ and ’run’ commands apply to the active window.

The directory dialog
In the directory dialog, the directories can be specified where the compiler should look for units,
libraries, object files. It also says where the output files should be stored. Multiple directories (except
for the output directory) can be entered, separated by semicolons. The directories dialog is shown in
figure (6.21).

Figure 6.21: The directories configuration dialog

The following directories can be specified:

EXE & PPU directories Specifies where the compiled units and executables will go. (-FE , (see
page5.1) on the command line.)

Object directories Specifies where the compiler looks for external object files. (-Fo , (see page5.1)
on the command line.)

Library directories Specifies where the compiler (more exactly, the linker) looks for external lib-
raries. (-Fl , (see page5.1) on the command line.)

Include directories Specifies where the compiler will look for include files, included with the{$i
} directive. (-Fi , (see page5.1) or -I , (see page5.1) on the command line.)

65



CHAPTER 6. THE IDE

Unit directories Specifies where the compiler will look for compiled units. The compiler always
looks first in the current directory, and also in some standard directories. (-Fu , (see page5.1)
on the command line.)

The target operating system
The menu item"Compile|Target" allows to specify the target operating system for which the
sources will be compiled. Changing the target doesn’t affect any compiler switches or director-
ies. It does affect some defines defined by the compiler. The settings here correspond to the option
-T , (see page5.1) on the command-line. The compilation target dialog is shown in figure (6.22).

Figure 6.22: The compilation target dialog

The following targets can be set:

Dos (go32v1)This switch will dissapear in time as this target is no longer being maintained.

Dos (go32v2)Compile forDOS, using version 2 of the Go32 extender.

FreeBSD Compile for FREEBSD.

Linux Compile forLINUX .

OS/2 Compile for OS/2 (using the EMX extender)

Win32 Compile for windows 32 bit.

The currently selected target operating system is shown in the menu item in the"Compile" menu.
Standard this should be the operating system for which the IDE was compiled.

Compiler options
The menu"Options|Compiler" allows to set other options that affect the compilers behaviour.
When this menu item is chosen, a dialog pops up that displays several tabs.

There are 5 tabs:

66



CHAPTER 6. THE IDE

Syntax Here options can be set that affect the various syntax aspects of the code. They correspond
mostly to the-S option on the command line (section5.1, page27).

Code generation These options control the generated code; they are mostly concerned with the-C
and-X command-line options.

Verbose These set the verbosity of the compiler when compiling. The messages of the compiler are
shown in the compiler messages window (can be called with F12).

Browser options concerning the generated browser information. Browser information needs to be
generated for the symbol browser to work.

Assembler Options concerning the reading of assembler blocks (-R on the command line) and the
generated assembler (-A on the command line)

Under the tab pages, theConditional definesentry box is visible; here symbols to define can be
entered. The symbols should be separated with semicolons. The syntax tab of the compiler options
dialog is shown in figure (6.23).

Figure 6.23: The syntax options tab

In this dialog, the following options can be set:

Delphi 2 extensions onEnables the use of classes and exceptions (-Sd , (see page5.1) on the
command-line).

C-like operators Allows the use of some extended operators such as+=, -= etc. (-Sc , (see page
5.1) on the command-line).

Stop after first error when checked, the compiler stops after the first error. Normally the compiler
continues compiling till a fatal error is reached. (-Se , (see page5.1) on the command-line)

Allow label and goto Allow the use of label declarations and goto statements (-Sg , (see page5.1)
on the command line).

C++ styled inline allows the use of inlined functions (-Sc , (see page5.1) on the command-line).

TP/BP 7.0 compatibility Try to be more Turbo Pascal compatible (-So , (see page5.1) on the
command-line).

Delphi compatibility try to be more Delphicompatible (-Sd , (see page5.1) on the command-line).

67



CHAPTER 6. THE IDE

Allow STATIC in objects Allow the Static modifier for object methods (-St , (see page5.1) on
the command-line)

Strict var-strings Not used.

Extended syntax Not used.

Allow MMX operations Allow MMX operations.

The code generation tab of the compiler options dialog is shown in figure (6.24).

Figure 6.24: The code generation options tab

In this dialog, the following options can be set:

Run-time checks Controls what run-time checking code is generated. If such a check fails, a run-
time error is generated. the following checking code can be generated:

Range checkingCode that checks the results of enumeration and subset type operations is
generated (-Cr , (see page5.1) command-line option)

Stack checking Code that checks whether the stack limit is not reached is generated (-Cs ,
(see page5.1) command-line option)

I/O checking Code that checks the result of IO operations is generated. (-Ci , (see page5.1)
command-line option).

Integer overflow checking The result of integer operations is checked (-Co , (see page5.1)
command-line option)

Target processor Set the target process for optimizations. The compiler can use different optimiza-
tions for different processors. This corresponds to theOpoption.

i386/i486 Code is optimized for less than Pentium processors.

Pentium/pentiumMMX Code is optimized for Pentium processors.

PPro/PII/c6x86/K6 Code is optimized for Pentium pro and higher processors.

Optimizations What optimizations should be used when compiling:

Generate faster codeCorresponds to the-OG command-line option.

Generate smaller codeCorresponds to the-Og command-line option.

68



CHAPTER 6. THE IDE

Use register variablesCorresponds to the-Or command-line option.

Uncertain optimizations Corresponds to the-Ou command-line option.

Level 1 optimizations Corresponds to theO1command-line option.

Level 2 optimizations Corresponds to theO1command-line option.

More information on these switches can be found in section5.1, page25. The verbose tab of the
compiler options dialog is shown in figure (6.25).

Figure 6.25: The verbosity options tab

In this dialog, the following verbosity options (-v , (see page5.1) on the command-line) can be set:

Warnings Generate warnings, corresponds to-vw on the command-line.

Notes Generate notes, corresponds to-vn on the command-line.

Hints Generate hints, corresponds to-vh on the command-line.

General info Generate general information, corresponds to-vi on the command-line.

User,tried info Generate information on used and tried files. Corresponds to-vut on the command-
line.

All Switch on full verbosity. Corresponds to-va on the command-line.

Show all procedure if error If an error using overloaded procedure occurs, show all procedures.
Corresponds to-vb on the command-line.

The browser tab of the compiler options dialog is shown in figure (6.26).

In this dialog, the browser options can be set:

No browser (default) no browser information is generated by the compiler.

Only global browser Browser information is generated for global symbols only, i.e. symbols defined
not in a procedure or function (-b on the command-line)

Local and global browser Browser information is generated for all symbols, i.e. also for symbols
that are defined in procedures or functions (-bl on the command-line)

69



CHAPTER 6. THE IDE

Figure 6.26: The browser options tab

Figure 6.27: The assembler options tab

Remark: If no browser information is generated, the symbol browser of the IDE will not work.

The assembler tab of the compiler options dialog is shown in figure (6.27).

In this dialog, the assembler reader and writer options can be set:

Assembler reader This allows to set the style of the assembler blocks in the sources:

Direct assembler The assembler blocks are copied as-is to the output (-Rdirect on the
command-line).

AT&T assembler The assembler is written inAT&Tstyle assembler (-Ratt on the command-
line).

Intel style assembler The assembler is written inIntel style assembler blocks (-Rintel
on the command-line).

remark that this option is global, but locally the assembler style can be changed with compiler
directives.

70



CHAPTER 6. THE IDE

Assembler info When writing assembler files, this option decides which extra information is written
to the assembler file in comments:

List source The source lines are written to the assembler files together with the generated
assembler (-al on the command line).

List register allocation The compilers internal register allocation/deallocation information is
written to the assembler file (-ar on the command-line).

List temp allocation The temporary register allocation/deallocation is written to the assem-
bler file. (-at on the command-line).

The latter two of these options are mainly useful for debugging the compiler itself, it should
be rarely necessary to use these.

Assembler output This option tells the compiler what assembler output should be generated.

Use default output This depends on the target.

Use GNU asassemble usingGNU as (-Aas on the command-line).

Use NASM coff produce NASM coff assembler (go32v2,-Anasmcoff on the command-
line)

Use NASM elf produce NASM elf assembler (LINUX , -Anasmelf on the command-line).

Use NASM obj produce NASM obj assembler (-Anasmobj on the command-line).

Use MASM produce MASM (Microsoft assembler) assembler (-Amasm on the command-
line).

Use TASM produce TASM (Turbo Assembler) assembler (-Atasm on the command-line).

Use coff Write binary coff files directly using the internal assembler (go32v2,-Acoff on the
command-line).

Use pecoff Write binary pecoff files files directly using the internal writer. (Win32)

Linker options
The linker options can be set in the menu"Options|Linker" . It allows to determine how libraries
and units are linked, and how the linker should be called. The linker options dialog is shown in figure
(6.28).

Figure 6.28: The linker options dialog

The following options can be set:

Call linker after If this option is set then a script is written which calls the linker. This corresponds
to the-s , (see page5.1) on the command-line.

Preferred library type With this option, the type of library to be linked in can be set:

71



CHAPTER 6. THE IDE

Target default This depends on the platform.

Dynamic libraries Tries to link in units in dynamical libraries. (option-XD on the command-
line)

Static libraries Tries to link in units in statical libraries. (option-XS on the command-line)

Smart libraries Tries to link in units in smartlinked libraries. (option-XX on the command-
line)

Memory sizes
The memory sizes dialog (reachable via"options|Memory sizes") allows to enter the memory sizes
for the project. The memory sizes dialog is shown in figure (6.29).

Figure 6.29: The memory sizes dialog

The following sizes can be entered:

Stack size Sets the size of the stack in bytes; (option-Cs on the command line). This size may be
ignored on some systems.

Heap size Sets the size of the heap in bytes; (option-Ch on the command-line). Note that the heap
grows dynamically as much as the OS allows.

Debug options
In the debug options dialog some options for inclusion of debug information in the binary can be
set; it is also possible to add additional compiler options in this dialog. The debug options dialog is
shown in figure (6.30).

The following options can be set:

Debugging information tells the compiler which debug information should be compiled in. One of
following options can be chosen:

Strip all debug symbols from executableWill strip all debug nd symbol information from
the binary. (option-Xs on the command-line).

Generate debug symbol information include debug information in the binary (option-g on
the command-line). Please note that no debug information for units in the Run-Time
Library will be included, unless a version of the RTL compiled with debug information is
available. Only units specific to the current project will have debug information included.

72



CHAPTER 6. THE IDE

Figure 6.30: The debug options dialog

Generate also backtrace lines informationWill compile with debug information, and will
additionally include thelineinfo unit in the binary, so in case of an error the backtrace
will contain the filenames and linenumbers of procedures in the call-stack. (Option-gl
on the command-line)

Profiling switches Tells the compiler whether or not profile code should be included in the binary.

No profile information Has no effect, as it is the default.

Generate Profile code for gprof If checked, profiling code is included in the binary (option
-p on the command-line).

Addition compiler args Here arbitrary options can be entered as they would be entered on the
command-line, they will be passed on to the compiler as typed here.

Debuggee redirection If checked, an attempt will be made to redirect the output of the program
being debugged to another window (terminal).

The switches mode
The IDE allows to save a set of compiler settings under a common name; it provides 3 names under
which the switches can be saved:

Normal For normal (fast) compilation.

Debug For debugging; intended to set most debug switches on. Also useful for setting conditional
defines that e.g. allow to include some debug code.

release For a compile of the program as it should be released, debug information should be off, the
binary should be stripped, and optimizations should be used.

Selecting one of these modes will load the compiler options as they were saved the last time the
selected mode was active, i.e. it doesn’t specifically set or unset options.

When setting and saving compiler options, be sure to select the correct switch mode first; it makes
little sense to set debug options while the release switch is active. The switches mode dialog is shown
in figure (6.31).

73



CHAPTER 6. THE IDE

Figure 6.31: The switches mode dialog

6.12 Customizing the IDE

The IDE is configurable in a wide range: Colors can be changed, screen resolution. The configuration
setting can reached via the sub-menuEnvironment in theOptions menu.

Preferences
Thepreferences dialogis called by the menu item"Options|Environment|Preferences". The pref-
erences dialog is shown in figure (6.32).

Figure 6.32: The preferences dialog

Video modes The drop down list at the top of the dialog allows to select a video mode. The available
video modes depend on the system on which the IDE is running.

Remark:

1. The video mode must be selected by pressing space or clicking on it. If the drop down
list is opened while leaving the dialog, the new video mode will not be applied.

74



CHAPTER 6. THE IDE

2. For the DOS version of the IDE, the following should be noted: When using VESA
modes, the display refresh rate may be very low. On older graphics card (1998 and
before), it is possible to use theUniVBEdriver ofSciTech5

Desktop File Specifies where the desktop file is saved: the current directory, or the directory where
the config file was found;

Auto save Here it is possible to set which files are saved when a program is run or when the IDE is
exited:

Editor files The contents of all open edit windows will be saved.

Environment The current environment settings will be saved

Desktop The desktop file with all desktop settings (open windows, history lists, breakpoints
etc.) will be saved.

Options Some special behaviour of the IDE can be specified here:

Auto track source

Close on go to sourceWhen checked, the messages window is closed when the ’go to source
line’ action is executed.

Change dir on open When a file is opened, the directory of that file is made the current work-
ing directory.

The desktop
The desktop preferences dialog allows to specify what elements of the desktop are saved across
sessions, i.e. they are saved when the IDE is left, and they are again restored when the IDE is started
the next time. They are saved in a filefp.dsk. The desktop preferences dialog is shown in figure
(6.33).

Figure 6.33: The desktop preferences dialog

The following elements can be saved and restored across IDE sessions:

5It can be downloaded fromhttp://www.informatik.fh-muenchen.de/ ifw98223/vbehz.htm

75

http://www.informatik.fh-muenchen.de/~{}ifw98223/vbehz.htm


CHAPTER 6. THE IDE

History lists Most entry boxes have a history list where previous entries are saved and can be selec-
ted. When this option is saved, these entries are saved in the desktop file. On by default.

Clipboard content When checked, the contents of the clipboard is also saved to disk. Off by default.

Watch expressionsWhen checked, all watch expressions are saved in the desktop file. Off by de-
fault.

Breakpoints When checked, all break points with their properties are saved in the desktop file. Off
by default.

Open windows When checked, the list of files in open editor windows is saved in the desktop file,
and the windows will be restored the next time the IDE is run. On by default.

Symbol information When checked, the information for the symbol browser is saved in the desktop
file. Off by default.

CodeComplete wordlist When checked, the list of code-completion words is saved. On by default.

CodeTemplatesWhen checked, the defined code-templates are saved. On by default.

The Editor
Several aspects of the editor window behaviour can be set in this dialog. The editor preferences
dialog is shown in figure (6.34).

Figure 6.34: The editor preferences dialog

The following elements can be set in the editor preferences dialog:

Create backup files Whenever an editor file is saved, a backup is made of the old file. On by default.

Auto indent mode Smart indenting is on. This means that pressing ENTER will position the cursor
on the next line in the same column where text starts on the current line. On by default.

Use tab charactersWhen the tab key is pressed, use a tab character. Normally, when the tab key
is pressed, spaces are inserted. When this option is checked, tab characters will be inserted
instead. Off by default.

76



CHAPTER 6. THE IDE

Backspace unindentsPressing the BKSPkey will unindent if the beginning of the text on the current
line is reached, instead of deleting just the previous character. On by default.

Persistent blocks When a selection is made, and the cursor is moved, the selection is not destroyed,
i.e. the selected block stays selected. On by default.

Syntax highlight Use syntax highlighting on the files that have an extension which appears in the
list of highlight extensions. On by default.

Block insert cursor The insert cursor is a block instead of an underscore character. By default the
overwrite cursor is a block. This option reverses that behaviour. Off by default.

Vertical blocks When selecting blocks over several lines, the block doesn’t select the whole lines in
the block, it selects the lines till the column on which the cursor is located. Off by default.

Highlight column When checked, the current column (i.e. the column where the cursor is) is high-
lighted. Off by default.

Highlight row When checked, the current row (i.e. the row where the cursor is) is highlighted. Off
by default.

Auto closing brackets When an opening bracket character is typed, the closing bracket is also in-
serted at once. Off by default.

Keep trailing spaces When saving a file, the spaces at the end of lines are stripped off. This beha-
viour disables that behaviour, i.e. any trailing spaces are also saved to file. Off by default.

Codecomplete enabledEnable code completion. On by default.

enable folds ???. Off by default.

Tab size The number of spaces that are inserted when the TAB key is pressed. The default value is
8.

Indent size The number of spaces a block is indented when calling the block indent function. The
default value is 2.

Highlight extensions When syntax highlighting is on, the list of file masks entered here will be used
to determine which files are highlighted. File masks should be separated with semicolon (;)
characters. The default is*.pas;*.pp;*.inc.

File patterns needing tabsSome files (such as makefiles) need actual tab characters instead of
spaces. Here a series of file masks can be entered for which tab characters will always be
used. Default ismake*;make*.*.

Remark: These options will not be applied to already opened windows, only newly opened windows will have
these options.

Mouse
The mouse options dialog is called by the menu item"Options|Environment|Mouse" . It allows to
adjust the behaviour of the mouse as well as the sensitivity of the mouse. The mouse options dialog
is shown in figure (6.35).

Mouse double click The slider can be used to adjust the double click speed. Fast means that the
time between two clicks is very short, slow means that the time between two mouse clicks can
be quite long.

77



CHAPTER 6. THE IDE

Figure 6.35: The mouse options dialog

Reverse mouse buttonsthe behaviour of the left and right mouse buttons can be changed by by
checking the checkbox; this is especially useful for left-handed people.

Ctrl+Right mouse button Assigns an action to a right mouse button click while holding the CTRL

key pressed.

Ctrl+Left mouse button Assigns an action to a left mouse button click while holding the CTRL key
pressed.

The following actions can be assigned to CTRL-right mouse button or ALT-right mouse button:

Topic search The keyword at the mouse cursor is searched in the help index.

Go to cursor The program is executed until the line where the mouse cursor is located.

Breakpoint Set a breakpoint at the mouse cursor position.

Evaluate Evaluate the value of the variable at the mouse cursor.

Add watch Add the variable at the mouse cursor to the watch list.

Browse symbol The symbol at the mouse cursor is displayed in the browser.

Colors
Almost all elements of the IDE such as borders input fields, buttons and so on can have their color
set in this dialog. The dialog sets the colors for all elements at once, i.e. it is not so that the color of
one particular button can be set.

The syntax highlighting colors for the editor windows of the IDE can also be set in this dialog. The
colors dialog is shown in figure (6.36).

The following elements are visible in the color dialog:

Group Here the group to be customized is displayed; A group is a specific window or series of
windows in the editor. A special group isSyntaxwhich sets the colors for syntax highlighting.

Browser Sets the colors for the symbol browser window.

78



CHAPTER 6. THE IDE

Figure 6.36: The colors dialog

Clock Sets the colors for the clock in the menu.

Desktop Sets the colors for the desktop.

Dialogs Sets the colors for the dialog windows.

Editor Sets the colors for the editor windows.

Help Sets the colors for the help windows.

Menus Sets the colors used in the menus.

Syntax Sets the colors used when performing syntax highlighting in the editor windows.

item Here the item for the current group can be selected. The foreground and background of this
item can be set using the color selectors on the right of the dialog.

Foreground Sets the foreground color of the selected item.

background Sets the background color of the selected item.

Sample text This shows the colors of the selected item in a sample text.

Setting a good color scheme is important especially for syntax highlighting; a good syntax highlight-
ing scheme helps in eliminating errors when typing, without needing to compile the sources.

6.13 The help system

More information on how to handle the IDE, or about the use of various calls in the RTL, explanations
regarding the syntax of a Pascal statement, can be found in thehelp system. The help system is
activated by pressing F1.

Navigating in the help system
The help system contains hyperlinks; these are sensitive locations that lead to another topic in the
help system. They are marked by a different color. The hyperlinks can be activated in 2 ways:

1. by clicking them with the mouse,

79



CHAPTER 6. THE IDE

2. by using the TAB and SHIFT-TAB keys to move between the different hyperlinks of a page and
the ENTER key can be used to activate them.

The contents of the help system is displayed, if SHIFT-F1 is pressed. To go back to the previous help
topic, press ALT-F1. This also works if the help window isn’t displayed on the desktop; the help
window will then be activated.

Working with help files
The IDE contains a help system which can display the following file formats:

TPH The help format for the Turbo Pascal help viewer.

INF The OS/2 help format.

NG The Norton Guide Help format.

HTML HTML files.

In future some more formats may be added. However, the above formats should cover already a wide
spectrum of help files available.

Remark: Concerning the support for HTML files the following should be noted:

1. The HTML viewer of the help system is limited, it can only handle the most basic HTML files
(graphics excluded), since it is only designed to display the Free Pascal help files.6.

2. When the HTML help viewer encounters a graphics file, it will try and find a file with the same
name but an extension of.ans; If this file is found, this will be interpreted as a file with ANSI
escape sequences, and these will be used to display a text image. The displays of the IDE
dialogs in the IDE help files are made in this way.

The menu item"Help|Files" permits to add and delete help files to the list of files in the help table
of contents. The help files dialog is displayed in figure (6.37).

Figure 6.37: The help files dialog

6...but feel free to improve it and send patches to the Free Pascal development team...

80



CHAPTER 6. THE IDE

The dialogs lists the files that will be presented in the table of contents window of the help system.
Each entry has a small descriptive title and a filename next to it. The following actions are available
when adding help files:

New Adds a new file. IDE will display a prompt, in which the location of the help file should be
entered.

If the added file is an HTML file, a dialog box will be displayed which asks for a title. This
title will then be included in the contents of help.

Delete Deletes the currently highlighted file from the help system. It isnot deleted from the hard
disk, only the help system entry is removed.

Cancel Discards all changes and closes the dialog.

OK Saves the changes and closes the dialog.

The Free Pascal documentation in HTML format can be added to the IDE’s help system, this way
the documentation can be viewed from within the IDE. If Free Pascal has been installed using the
installer, the installer should have added the FPC documentation to the list of help files, if the docu-
mentation was installed as well.

The about dialog
Theabout dialog, reachable through ("Help|About..." ) shows some information about the IDE, such
as the version number, the date it was built, what compiler and debugger it uses. When reporting bugs
about the IDE, please use the information given by this dialog to identify the version of the IDE that
was used.

It also displays some copyright information.

6.14 Keyboard shortcuts

A lot of keyboard shortcuts used by the IDE are compatible with WordStar and should be well known
to Turbo Pascal users.

Below are the following tables:

1. In table (6.4) some shortcuts for handling the IDE windows and Help are listed.

2. In table (6.5) the shortcuts for compiling, running and debugging a program are presented.

3. In table (6.6) the navigation keys are described.

4. In table (6.7) the editing keys are listed.

5. In table (6.8) lists all block command shortcuts.

6. In table (6.9) all selection-changing shortcuts are presented.

7. In table (6.10) some general shortcuts are presented, which do not fit in the previous categories.

81



CHAPTER 6. THE IDE

Table 6.4: General

Command Key shortcut Alternative
Help F1
Goto last help topic ALT-F1
Search word at cursor position in
help

CTRL-F1

Help index SHIFT-F1
Close active window ALT-F3
Zoom/Unzoom window F5
Move/Zoom active window CTRL-F5
Switch to next window F6
Switch to last window SHIFT-F6
Menu F10
Local menu ALT-F10
List of windows ALT-0
Active another window ALT-<DIGIT>
Call grep utility SHIFT-F2
Exit IDE ALT-X

Table 6.5: Compiler

Command Key shortcut Alternative
Reset debugger/program CTRL-F2
Display call stack CTRL-F3
Run til cursor F4
Switch to user screen ALT-F5
Trace into F7
Add watch CTRL-F7
Step over F8
Set breakpoint at current line CTRL-F8
Make F9
Run CTRL-F9
Compile the active source file ALT-F9
Message F11
Compiler messages F12

82



CHAPTER 6. THE IDE

Table 6.6: Text navigation

Command Key shortcut Alternative
Char left ARROW LEFT CTRL-S
Char right ARROW RIGHT CTRL-D
Line up ARROW UP CTRL-E
Line down ARROW DOWN CTRL-X
Word left CTRL-ARROW LEFT CTRL-A
Word right CTRL-ARROW RIGHT CTRL-F
Scroll one line up CTRL-W
Scroll one line down CTRL-Z
Page up PAGEUP CTRL-R
Page down PAGEDOWN

Beginning of Line POS1 CTRL-Q-S
End of Line END CTRL-Q-D
First line of window CTRL-POS1 CTRL-Q-E
Last line of window CTRL-END CTRL-Q-X
First line of file CTRL-PAGEUP CTRL-Q-R
Last line of file CTRL-PAGEDOWN CTRL-Q-C
Last cursor position CTRL-Q-P

Table 6.7: Edit

Command Key shortcut Alternative
Delete char DEL CTRL-G
Delete left char BACKSPACE CTRL-H
Delete line CTRL-Y
Delete til end of line CTRL-Q-Y
Delete word CTRL-T
Insert line CTRL-N
Toggle insert mode INSERT CTRL-V

83



CHAPTER 6. THE IDE

Table 6.8: Block commands

Command Key shortcut Alternative
Goto Beginning of selected text CTRL-Q-B
Goto end of selected text CTRL-Q-K
Select current line CTRL-K-L
Print selected text CTRL-K-P
Select current word CTRL-K-T
Delete selected text CTRL-DEL CTRL-K-Y
Copy selected text to cursor posi-
tion

CTRL-K-C

Move selected text to cursor posi-
tion

CTRL-K-V

Copy selected text to clipboard CTRL-INS

Move selected text to the clipboard SHIFT-DEL

Indent block one column CTRL-K-I
Unindent block one column CTRL-K-U
Insert text from clipboard SHIFT-INSERT

Insert file CTRL-K-R
Write selected text to file CTRL-K-W
Uppercase current block CTRL-K-N

Table 6.9: Change selection

Command Key shortcut Alternative
Mark beginning of selected text CTRL-K-B
Mark end of selected text CTRL-K-K
Remove selection CTRL-K-Y
Extend selection one char to the left SHIFT-ARROW LEFT

Extend selection one char to the
right

SHIFT-ARROW RIGHT

Extend selection to the beginning of
the line

SHIFT-POS1

Extend selection to the end of the
line

SHIFT-END

Extend selection to the same
column in the last row

SHIFT-ARROW UP

Extend selection to the same
column in the next row

SHIFT-ARROW DOWN

Extend selection to the end of the
line

SHIFT-END

Extend selection one word to the
left

CTRL-SHIFT-ARROW LEFT

Extend selection one word to the
right

CTRL-SHIFT-ARROW RIGHT

Extend selection one page up SHIFT-PAGEUP

Extend selection one page down SHIFT-PAGEDOWN

Extend selection to the beginning of
the file

CTRL-SHIFT-POS1 CTRL-SHIFT-PAGEUP

Extend selection to the end of the
file

CTRL-SHIFT-END CTRL-SHIFT-PAGEUP

84



CHAPTER 6. THE IDE

Table 6.10: Misc. commands

Command Key shortcut Alternative
Save file F2 CTRL-K-S
Open file F3
Search CTRL-Q-F
Search again CTRL-L
Search and replace CTRL-Q-A
Set mark CTRL-K-N (where n can be 0..9)
Goto mark CTRL-Q-N (where n can be 0..9)
Undo ALT-BACKSPACE

85



Chapter 7

Porting Turbo Pascal Code

Free Pascal was designed to resemble Turbo Pascal as closely as possible. There are, of course,
restrictions. Some of these are due to the fact that Free Pascal is a 32-bit compiler. Other restrictions
result from the fact that Free Pascal works on more than one operating system.

In general we can say that if you keep your program code close to ANSI Pascal, you will have no
problems porting from Turbo Pascal, or even Delphi, to Free Pascal. To a large extent, the constructs
defined by Turbo Pascal are supported. This is even more so if you use the-So or -S2 switches.

In the following sections we will list the Turbo Pascal constructs which are not supported in Free
Pascal, and we will list in what ways Free Pascal extends the Turbo Pascal language.

7.1 Things that will not work

Here we give a list of things which are defined/allowed in Turbo Pascal, but which are not supported
by Free Pascal. Where possible, we indicate the reason.

1. Duplicate case labels are not allowed. This is a bug in Turbo Pascal and will not be changed.

2. Parameter lists of previously defined functions and procedures must match exactly. The reason
for this is the function overloading mechanism of Free Pascal. (however, the-So , (see page
5.1) option solves this.)

3. The MEM, MEMW, MEMLand PORTvariables for memory and port access are not avail-
able in the system unit. This is due to the operating system. UnderDOS, the extender unit
(GO32.PPU) implements the mem constuct. underLINUX , theports unit implements such a
construct.

4. PROTECTED, PUBLIC, PUBLISHED, TRY, FINALLY, EXCEPT, RAISE are reserved
words. This means you cannot create procedures or variables with the same name. While they
are not reserved words in Turbo Pascal, they are in Delphi. Using the-So switch will solve
this problem if you want to compile Turbo Pascal code that uses these words.

5. The reserved wordsFAR, NEARare ignored. This is because Free Pascal is a 32 bit compiler,
so they’re obsolete.

6. INTERRUPTwill work only on theDOS target.

7. Boolean expressions are only evaluated until their result is completely determined. The rest of
the expression will be ignored.

86



CHAPTER 7. PORTING TURBO PASCAL CODE

8. By default the compiler usesAT&T assembler syntax. This is mainly because Free Pascal
usesGNU as . However, other assembler forms are available. For more information, see
Programmers guide.

9. Turbo Vision is not completely available. There is FreeVision, but the degree of compatibility
with Turbo Vision is unclear at this time1.

10. The ’overlay’ unit is not available. It also isn’t necessary, since Free Pascal is a 32 bit compiler,
so program size shouldn’t be a point.

11. There are more reserved words. (see appendixB for a list of all reserved words.)

12. The command-line parameters of the compiler are different.

13. Compiler switches and directives are mostly the same, but some extra exist.

14. Units are not binary compatible.

15. Sets are always 4 bytes in Free Pascal; this means that some typecasts which were possible in
Turbo Pascal are no longer possible in Free Pascal.

16. A file is opened for output only (usingfmOutput ) when it is opened withRewrite . In
order to be able to read from it, it should be reset withReset .

17. Destructors cannot have parameters. This restriction can be solved by using the-So switch.

18. There can be only one destructor. This restriction can also be solved by using the-So switch.

19. The order in which expressions are evaluated is not necessarily the same. In the following
expression:

a := g(2) + f(3);

it is not guaranteed thatg(2) will be evaluated beforef(3) .

7.2 Things which are extra

Here we give a list of things which are possible in Free Pascal, but which didn’t exist in Turbo Pascal
or Delphi.

1. There are more reserved words. (see appendixB for a list of all reserved words.)

2. Functions can also return complex types, such as records and arrays.

3. You can handle function results in the function itself, as a variable. Example

function a : longint;

begin
a:=12;
while a>4 do

begin
{...}

end;
end;

1At the time of writing, FreeVision has been taken off the net, because there are some copyright issues which make it
impossible to distribute it.

87

file:../prog/prog.html


CHAPTER 7. PORTING TURBO PASCAL CODE

The example above would work with TP, but the compiler would assume that thea>4 is a
recursive call. To do a recursive call in this you must append() behind the function name:

function a : longint;

begin
a:=12;
{ this is the recursive call }
if a()>4 then

begin
{...}

end;
end;

4. There is partial support of Delphi constructs. (see theProgrammers guidefor more information
on this).

5. Theexit call accepts a return value for functions.

function a : longint;

begin
a:=12;
if a>4 then

begin
exit(a*67); {function result upon exit is a*67 }

end;
end;

6. Free Pascal supports function overloading. That is, you can define many functions with the
same name, but with different arguments. For example:

procedure DoSomething (a : longint);
begin
{...}
end;

procedure DoSomething (a : real);
begin
{...}
end;

You can then call procedureDoSomething with an argument of typeLongint or Real .
This feature has the consequence that a previously declared function must always be defined
with the header completely the same:

procedure x (v : longint); forward;

{...}

procedure x;{ This will overload the previously declared x}
begin
{...}
end;

88

file:../prog/prog.html


CHAPTER 7. PORTING TURBO PASCAL CODE

This construction will generate a compiler error, because the compiler didn’t find a definition
of procedure x (v : longint); . Instead you should define your procedure x as:

procedure x (v : longint);
{ This correctly defines the previously declared x}
begin
{...}
end;

(The-So , (see page5.1) switch disables overloading. When you use it, the above will compile,
as in Turbo Pascal.

7. Operator overloading. Free Pascal allows to overload operators, i.e. you can define e.g. the ’+’
operator for matrices.

8. On FAT16 and FAT32 systems, long file names are supported.

7.3 Turbo Pascal compatibility mode

When you compile a program with the-So switch, the compiler will attempt to mimic the Turbo
Pascal compiler in the following ways:

• Assigning a procedural variable doesn’t require a @ operator. One of the differences between
Turbo Pascal and Free Pascal is that the latter requires you to specify an address operator when
assigning a value to a procedural variable. In Turbo Pascal compatibility mode, this is not
required.

• Procedure overloading is disabled. If procedure overloading is disabled, the function header
doesn’t need to repeat the function header.

• Forward defined procedures don’t need the full parameter list when they are defined. Due to
the procedure overloading feature of Free Pascal, you must always specify the parameter list
of a function when you define it, even when it was declared earlier withForward . In Turbo
Pascal compatibility mode, there is no function overloading, hence you can omit the parameter
list:

Procedure a (L : Longint); Forward;

...

Procedure a ; { No need to repeat the (L : Longint) }

begin
...

end;

• recursive function calls are handled differently. Consider the following example :

Function expr : Longint;

begin
...
Expr:=L:

89



CHAPTER 7. PORTING TURBO PASCAL CODE

Writeln (Expr);
...

end;

In Turbo Pascal compatibility mode, the function will be called recursively when thewriteln
statement is processed. In Free Pascal, the function result will be printed. In order to call the
function recusively under Free Pascal, you need to implement it as follows :

Function expr : Longint;

begin
...
Expr:=L:
Writeln (Expr());
...

end;

• Any text after the finalEnd. statement is ignored. Normally, this text is processed too.

• You cannot assign procedural variables to untyped pointers; so the following is invalid:

a: Procedure;
b: Pointer;

begin
b := a; // Error will be generated.

• The @ operator is typed when applied on procedures.

• You cannot nest comments.

7.4 A note on long file names underDOS

Under WINDOWS 95 and higher, long filenames are supported. Compiling for the win32 target
ensures that long filenames are supported in all functions that do file or disk access in any way.

Moreover, Free Pascal supports the use of long filenames in the system unit and the dos unit also
for go32v2 executables. The system unit contains the boolean variableLFNsupport . If it is set
to True then all system unit functions and DOS unit functions will use long file names if they are
available. This should be so on WINDOWS 95 and 98, but not on WINDOWS NT or WINDOWS 2000.
The system unit will check this by callingDOS function71A0h and checking whether long filenames
are supported on theC: drive.

It is possible to disable the long filename support by setting theLFNSupport variable toFalse ;
but in general it is recommended to compile programs that need long filenames as native Win32
applications;

90



Chapter 8

Utilities that come with Free Pascal

Besides the compiler and the Run-Time Library, Free Pascal comes with some utility programs and
units. Here we list these programs and units.

8.1 Demo programs and examples

Also distributed with Free Pascal comes a series of demonstration programs. These programs have
no other purpose than demonstrating the capabilities of Free Pascal. They are located in thedemo
directory of the sources.

All example programs of the documentation are available. Check out the directories that end onex
in the documentation sources. There you will find all example sources.

8.2 Supplied programs

ppudump program
ppudump is a program which shows the contents of a Free Pascal unit. It is distributed with the
compiler. You can just issue the following command

ppudump [options] foo.ppu

to display the contents of thefoo.ppu unit. You can specify multiple files on the command line.

The options can be used to change the verbosity of the display. By default, all available information
is displayed. You can set the verbosity level using the-Vxxx option. Here,xxx is a combination of
the following letters:

h: show header info.

i: show interface information.

m: show implementation information.

d: show only (interface) definitions.

s: show only (interface) symbols.

b: show browser info.

a: show everything (default if no -V option is present).

91



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

ppumove program
ppumove is a program to make shared or static libraries from multiple units. It can be compared
with thetpumove program that comes with Turbo Pascal.

It should be distributed in binary form along with the compiler.

Its usage is very simple:

ppumove [options] unit1.ppu unit2.ppu ... unitn.ppu

Whereoptions is a combination of

-b: If specified, ppumve will generate a batch file that will contain the external linking and archiving
commands that must be executed. The name of this batch file ispmove.sh on LINUX , and
pmove.bat otherwise.

-d xxx: If specified, the output files will put in the directoryxxx

-e xxx: Sets the extension of the moved unit files toxxx. By default, this is.ppl. You don’t have to
specify the dot.

-o xxx: sets the name of the output file, i.e. the name of the file containing all the units. This
parameter is mandatory when you use multiple files. OnLINUX , ppumove will prepend this
name withlib if it isn’t already there, and will add an extension appropriate to the type of
library.

-q: Causesppumove to operate silently.

-s: Tells ppumove to make a static library instead of a dynamic one; By default a dynamic library
is made onLINUX .

-w: Tells ppumove that it is working under WINDOWS NT. This will change the names of te linker
and archiving program toldw andarw, respectively.

-h or -?: will display a short help.

The action of the ppumve program is as follows: It takes each of the unit files, and modifies it so that
the compile will know that it should look for the unit code in the library. The new unit files will have
an extension.ppu, this can be changed with the-e option. It will then put together all the object
files of the units into one library, static or dynamic, depending on the presence of the-s option.

The name of this library must be set with the-o option. If needed, the prefixlib will be prepended
underLINUX .. The extension will be set to.a for static libraries, for shared libraries the extensions
are.so on linux, and.dll under WINDOWS NT andOS/2.

As an example, the following command

./ppumove -o both -e ppl ppu.ppu timer.ppu

under linux, will generate the following output:

PPU-Mover Version 0.99.7
Copyright (c) 1998 by the Free Pascal Development Team

Processing ppu.ppu... Done.
Processing timer.ppu... Done.
Linking timer.o ppu.o
Done.

92



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

And it will produce the following files:

1. libboth.so : The shared library containing the code fromppu.o andtimer.o. Under WINDOWS

NT, this file would be calledboth.dll.

2. timer.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

3. ppu.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

You could then use or distribute the fileslibboth.so, timer.ppl andppu.ppl.

ptop - Pascal source beautifier
ptop program

ptop is a source beautifier written by Peter Grogono based on the ancient pretty-printer by Ledgard,
Hueras, and Singer, modernized by the Free Pascal team (objects, streams, configurability etc)

This configurability, and the thorough bottom-up design are the advantages of this program over the
diverse TurboPascal sourcebeautifiers on e.g. SIMTEL.

The program is quite simple to operate:

ptop "[-v] [-i indent] [-b bufsize ][-coptsfile] infile outfile"

The Infile parameter is the pascal file to be processed, and will be written tooutfile, overwriting an
existingoutfile if it exists.

Some options modify the behaviour of ptop:

-h Writes an overview of the possible parameters and commandline syntax.

-c ptop.cfg Read some configuration data from configuration file instead of using the internal de-
faults then. A config file is not required, the program can operate without one. See also -g.

-i ident Sets the number of indent spaces used for BEGIN END; and other blocks.

-b bufsize Sets the streaming buffersize to bufsize. Default 255, 0 is considered non-valid and ig-
nored.

-v be verbose. Currently only outputs the number of lines read/written and some error messages.

-g ptop.cfg Writes a default configuration file to be edited to the file "ptop.cfg"

The ptop configuration file

Creating and distributing a configuration file for ptop is not necesarry, unless you want to modify the
standard behaviour ofptop. The configuration file is never preloaded, so if you want to use it you
should always specify it with a-c ptop.cfg parameter.

The structure of a ptop configuration file is a simple buildingblock repeated several (20-30) times,
for each pascal keyword known to theptop program. (see the default configuration file orptopu.pp
source to find out which keywords are known)

The basic building block of the configuration file consists out of one or two lines, describing how
ptop should react on a certain keyword. First a line without square brackets with the following
format:

93



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

keyword=option1,option2,option3,...

If one of the options is "dindonkey" (see further below), a second line (with square brackets) is
needed like this:

[keyword]=otherkeyword1,otherkeyword2,otherkeyword3,...

As you can see the block contains two types of identifiers, keywords(keyword and otherkeyword1..3
in above example) and options, (option1..3 above).

Keywords are the built-in valid Pascal structure-identifiers like BEGIN, END, CASE, IF, THEN,
ELSE, IMPLEMENTATION. The default configuration file lists most of these.

Besides the real Pascal keywords, some other codewords are used for operators and comment expres-
sions. table (8.1)

Table 8.1: keywords for operators

Name of codeword operator
casevar : in a case label ( unequal ’colon’)
becomes :=
delphicomment //
opencomment { or (*
closecomment } or *)
semicolon ;
colon :
equals =
openparen [
closeparen ]
period .

TheOptions codewords define actions to be taken when the keyword before the equal sign is found,
table (8.2)

The option "dindonkey" requires some extra parameters, which are set by a second line for that
option (the one with the square brackets), which is therefore is only needed if the options contain
"dinkdonkey" (contraction of de-indent on assiociated keyword).

"dinkdonkey" deindents if any of the keywords specified by the extra options of the square-bracket
line is found.

Example: The lines

else=crbefore,dindonkey,inbytab,upper
[else]=if,then,else

mean the following:

• The keyword this block is about iselsebecause it’s on the LEFT side of both equal signs.

• The optioncrbefore signals not to allow other code (so just spaces) before the ELSE
keyword on the same line.

• The optiondindonkey de-indents if the parser finds any of the keywords in the square brack-
ets line (if,then,else)

• The optioninbytab means indent by a tab.

• The optionupper uppercase the keyword (else or Else becomes ELSE)

94



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

Table 8.2: Possible options

Option does what
crsupp suppress CR before the keyword.
crbefore force CR before keyword

(doesn’t go with crsupp :) )
blinbefore blank line before keyword.
dindonkey de-indent on associated keywords

(see below)
dindent deindent (always)
spbef space before
spaft space after
gobsym Print symbols which follow a

keyword but which do not
affect layout. prints until
terminators occur.
(terminators are hard-coded in pptop,
still needs changing)

inbytab indent by tab.
crafter force CR after keyword.
upper prints keyword all uppercase
lower prints keyword all lowercase
capital capitalizes keyword: 1st letter

uppercase, rest lowercase.

Try to play with the configfile step by step until you find the effect you desire. The configurability
and possibilities of ptop are quite large. E.g. I like all keywords uppercased instead of capitalized,
so I replaced all capital keywords in the default file by upper.

ptop is still development software, so it is wise to visually check the generated source and try to
compile it, to see ifptop hasn’t made any errors.

ptopu unit

The source of thePtoP program is conveniently split in two files: One is a unit containing an object
that does the actual beautifying of the source, the other is a shell built around this object so it can be
used from the command line. This design makes it possible to include the object in some program
(e.g. an IDE) and use its features to format code.

The object resided in thePtoPU unit, and is declared as follows

TPrettyPrinter=Object(TObject)
Indent : Integer; { How many characters to indent ? }
InS : PStream;
OutS : PStream;
DiagS : PStream;
CfgS : PStream;
Constructor Create;
Function PrettyPrint : Boolean;

end;

Using this object is very simple. The procedure is as follows:

95



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

1. Create the object, using its constructor.

2. Set theIns stream. This is an open stream, from which pascal source will be read. This is a
mandatory step.

3. Set theOutS stream. This is an open stream, to which the beautified pascal source will be
written. This is a mandatory step.

4. Set theDiagS stream. Any diagnostics will be written to this stream. This step is optional. If
you don’t set this, no diagnostics are written.

5. Set theCfgs stream. A configuration is read from this stream. (see the previous section for
more information about configuration). This step is optional. If you don’t set this, a default
configuration is used.

6. Set theIndent variable. This is the number of spaces to use when indenting. Tab characters
are not used in the program. This step is optional. The indent variable is initialized to 2.

7. Call PrettyPrint . This will pretty-print the source inIns and write the result toOutS .
The function returnsTrue if no errors occurred,False otherwise.

So, a minimal procedure would be:

Procedure CleanUpCode;

var
Ins,OutS : PBufStream;
PPRinter : TPrettyPrinter;

begin
Ins:=New(PBufStream,Init(’ugly.pp’,StopenRead,TheBufSize));
OutS:=New(PBufStream,Init(’beauty.pp’,StCreate,TheBufSize));
PPrinter.Create;
PPrinter.Ins:=Ins;
PPrinter.outS:=OutS;
PPrinter.PrettyPrint;

end;

Using memory streams allows very fast formatting of code, and is perfectly suitable for editors.

rstconv program
The rstconv program converts the resource string files generates by the compiler (when you use
resource string sections) to.po files that can be understood by the GNUmsgfmt program.

Its usage is very easy; it accepts the following options:

-i file Use the specified file instead of stdin as input file. This option is optional.

-o file write output to the specified file. This option is required.

-f format Specifies the output format. At the moment, only one output format is supported:po for
GNU gettext.po format. It is the default format.

As an example:

rstconv -i resdemo.rst -o resdemo.po

96



CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

will convert theresdemo.rst file to resdemo.po.

More information on therstconv utility can be found in theProgrammers guide, under the chapter
about resource strings.

fpcmake
fpcmake is the Free Pascal makefile constructor program.

It reads aMakefile.fpc configuration file and converts it to aMakefile suitable for reading by GNU
make to compile your projects. It is similar in functionality to GNUautoconf or Imake for making
X projects.

fpcmake accepts filenames of makefile description files as its command-line arguments. For each of
these files it will create aMakefile in the same directory where the file is located, overwriting any
other existing file.

If no options are given, it just attempts to read the fileMakefile.fpc in the current directory and tries
to construct a makefile from it. any previously existingMakefile will be erased.

The format of thefpcmake configuration file is described in great detail in the appendices of the
Programmers guide.

97

file:../prog/prog.html
file:../prog/prog.html


Chapter 9

Units that come with Free Pascal

Here we list the units that come with the Free Pascal distribution. Since there is a difference in the
supplied units per operating system, we first describe the generic ones, then describe those which are
operating specific.

9.1 Standard units

The following units are standard and are meant to be ported to all supported platforms by Free Pascal.
A brief description of each unit is also given.

crt This unit is similar to the unit of the same name of Turbo Pascal. It implements writing to the
console in color, moving the text cursor around and reading from the keyboard.

dos This unit provides basic routines for accessing the operating system. This includes file search-
ing, environment variables access, getting the operating system version, getting and setting
the system time. It is to note that some of these routines are duplicated in functionality in the
sysutils unit.

getoptsThis unit gives you theGNU getopts command-line arguments handling mechanism. It also
supports long options.

graph This unit provides basic graphics handling, with routines to draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

keyboardprovides basic keyboard handling routines in a platform independent way, and supports writing
custom drivers.

math This unit contains common mathematical routines (trigonometric functions, logarithms, etc.)
as well as more complex ones (summations of arrays, normalization functions, etc.).

mmx This unit provides support formmxextensions in your code.

mouseprovides basic mouse handling routines in a platform independent way, and supports writing
custom drivers.

objects This unit provides the base object for standard Turbo Pascal objects. It also implements File
and Memory stream objects, as well as sorted and non-sorted collections, and string streams.

objpas is used for Delphi compatibility; you should never load this unit explicitly; it is automatically
loaded if you request Delphi mode.

98



CHAPTER 9. UNITS THAT COME WITH FREE PASCAL

printer This unit provides all you need for rudimentary access to the printer using standard I/O routines.

socketsThis gives the programmer access to sockets and TCP/IP programming.

strings This unit provides basic string handling routines for thepchar type, comparable to similar
routines in standardC libraries.

systemThis unit is available for all supported platforms, even though the unit name may be different
(e.g : syslinux, sysos2). It includes among others, basic file I/O routines, memory management
routines, all compiler helper routines, and directory services routines.

sysutils is an alternative implementation of the sysutils unit of Delphi. It includes file I/O access
routines which takes care of file locking, date and string handling routines, file search, date
and string conversion routines.

typinfo Provides functions to acces Run-Time Type Information, just like Delphi.

video provides basic screen handling in a platform independent way, and supports writing custom
drivers.

9.2 Under DOS

emu387This unit provides support for the coprocessor emulator.

go32 This unit provides access to possibilities of theGO32DOS extender.

9.3 Under Windows

wincrt This implements a console in a standard GUI window, contrary to thecrt unit which is for
the Windows console only.

Windows This unit provides access to al Win32 API calls. Effort has been taken to make sure that it is
compatible to the Delphi version of this unit, so code for Delphi is easily ported to Free Pascal.

opengl provides access to the low-level opengl functions in WINDOWS.

winmouseprovides access to the mouse in WINDOWS.

ole2 provides access to the OLE capabilities of WINDOWS.

winsock provides acces to the WINDOWS sockets API Winsock.

9.4 Under Linux

linux This unit provides access to theLINUX operating system. It provides most file and I/O handling
routines that you may need. It implements most of the standardC library constructs that you
will find on a Unix system. If you do a lot of disk/file operations, the use of this unit is
recommended over the one you use under Dos.

graph Is an implementation of Borlandsgraph unit, which works on the Linux console. Its imple-
mentation is as complete as on the other platforms (it shares the same code). It uses the libvga
and libvgagl graphics libraries, so you need these installed for this unit to work. Also, pro-
grams using this library need to be run as root, or setuid root, and hence are a potential security
risk.

99



CHAPTER 9. UNITS THAT COME WITH FREE PASCAL

ports This implements the variousport[] constructs. These are provided for compatibility only,
and it is not recommended to use them extensively. Programs using this construct must be run
as ruit or setuid root, and are a serious security risk on your system.

9.5 Under OS/2

doscalls interface todoscalls.dll.

dive interface todive.dll

emx provides access to the EMX extender.

pm* interface units for the program manager functions.

viocalls interface toviocalls.dll screen handling library.

moucalls interface tomoucalls.dll mouse handling library.

kbdcalls interface tokbdcalls.dll keyboard handling library.

moncalls interface tomoncalls.dll monitoring handling library.

9.6 Unit availability

Standard unit availability for each of the supported platforms is given in the FAQ / Knowledge base.

100



Chapter 10

Debugging your Programs

Free Pascal supports debug information for theGNU debuggergdb , or its derivativesInsight on
win32 orddd on LINUX .

This chapter describes shortly how to use this feature. It doesn’t attempt to describe completely the
GNU debugger, however. For more information on the workings of theGNU debugger, see thegdb
users’ guide.

Free Pascal also suportsgprof , theGNU profiler, see section10.4for more information on profiling.

10.1 Compiling your program with debugger support

First of all, you must be sure that the compiler is compiled with debugging support. Unfortunately,
there is no way to check this at run time, except by trying to compile a program with debugging
support.

To compile a program with debugging support, just specify the-g option on the command-line, as
follows:

fpc -g hello.pp

This will generate debugging information in the executable from your program. You will notice that
the size of the executable increases substantially because of this1.

Note that the above will only generate debug informationfor the code that has been generatedwhen
compiling hello.pp. This means that if you used some units (the system unit, for instance) which
were not compiled with debugging support, no debugging support will be available for the code in
these units.

There are 2 solutions for this problem.

1. Recompile all units manually with the-g option.

2. Specify the ’build’ option (-B ) when compiling with debugging support. This will recompile
all units, and insert debugging information in each of the units.

The second option may have undesirable side effects. It may be that some units aren’t found, or
compile incorrectly due to missing conditionals, etc..

If all went well, the executable now contains the necessary information with which you can debug it
usingGNU gdb .

1A good reason not to include debug information in an executable you plan to distribute.

101



CHAPTER 10. DEBUGGING YOUR PROGRAMS

10.2 Usinggdb to debug your program

To use gdb to debug your program, you can start the debugger, and give it as an option thefull name
of your program:

gdb hello

Or, underDOS:

gdb hello.exe

This starts the debugger, and the debugger immediately loads your program into memory, but it
does not run the program yet. Instead, you are presented with the following (more or less) message,
followed by thegdb prompt’(gdb)’ :

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15.1 (i486-slackware-linux),
Copyright 1995 Free Software Foundation, Inc...
(gdb)

To start the program you can use therun command. You can optionally specify command-line
parameters, which will then be fed to your program, for example:

(gdb) run -option -anotheroption needed_argument

If your program runs without problems,gdb will inform you of this, and return the exit code of
your program. If the exit code was zero, then the message’Program exited normally’ is
displayed.

If something went wrong (a segmentation fault or so),gdb will stop the execution of your program,
and inform you of this with an appropriate message. You can then use the othergdb commands to
see what happened. Alternatively, you can instructgdb to stop at a certain point in your program,
with thebreak command.

Here is a short list ofgdb commands, which you are likely to need when debugging your program:

quit Exits the debugger.

kill Stops a running program.

help Gives help on allgdb commands.

file Loads a new program into the debugger.

directory Add a new directory to the search path for source files.

Remark: My copy of gdb needs ’.’ to be added explicitly to the search path, otherwise it doesn’t find
the sources.

list Lists the program sources per 10 lines. As an option you can specify a line number or function
name.

break Sets a breakpoint at a specified line or function

awatch Sets a watch-point for an expression. A watch-point stops execution of your program
whenever the value of an expression is either read or written.

102



CHAPTER 10. DEBUGGING YOUR PROGRAMS

for more information, see thegdb users’ guide, or use the’help’ function ingdb .

The appendixF contains a sample init file forgdb , which produces good results when debugging
Free Pascal programs.

It is also possible to useRHIDE, a text-based IDE that uses gdb. There is a version of RHIDE
available that can work together with FPC.

10.3 Caveats when debugging withgdb

There are some peculiarities of Free Pascal which you should be aware of when usinggdb . We list
the main ones here:

1. Free Pascal generates information for GDB in uppercare letters. This is a consequence of the
fact that pascal is a case insensitive language. So, when referring to a variable or function, you
need to make its name all uppercase.

As an example, of you want to watch the value of a loop variablecount , you should type

watch COUNT

Or if you want stop when a certain function (e.gMyFunction ) is called, type

break MYFUNCTION

2. gdb does not know sets.

3. gdb doesn’t know strings. Strings are represented ingdb as records with a length field and an
array of char contaning the string.

You can also use the following user function to print strings:

define pst
set $pos=&$arg0
set $strlen = {byte}$pos
print {char}&$arg0.st@($strlen+1)
end

document pst
Print out a Pascal string

end

If you insert it in yourgdb.ini file, you can look at a string with this function. There is a sample
gdb.ini in appendixF.

4. Objects are difficult to handle, mainly becausegdb is oriented towards C and C++. The
workaround implemented in Free Pascal is that object methods are represented as functions,
with an extra parameterthis (all lowercase !) The name of this function is a concatenation
of the object type and the function name, separated by two underscore characters.

For example, the methodTPoint.Draw would be converted toTPOINT__DRAW, and could
be stopped at with

break TPOINT__DRAW

5. Global overloaded functions confusegdb because they have the same name. Thus you cannot
set a breakpoint at an overloaded function, unless you know its line number, in which case you
can set a breakpoint at the starting linenumber of the function.

103



CHAPTER 10. DEBUGGING YOUR PROGRAMS

10.4 Support for gprof , the GNU profiler

You can compile your programs with profiling support. for this, you just have to use the compiler
switch-pg . The compiler wil insert the necessary stuff for profiling.

When you have done this, you can run your program as you normally would run it.

yourexe

Whereyourexe is the name of your executable.

When your program finishes a file called gmon.out is generated. Then you can start the profiler to
see the output. You can better redirect the output to a file, becuase it could be quite a lot:

gprof yourexe > profile.log

Hint: you can use the –flat option to reduce the amount of output of gprof. It will then only output
the information about the timings

For more information on theGNU profilergprof , see its manual.

10.5 Detecting heap memory leaks

Free Pascal has a built in mechanism to detect memory leaks. There is a plug-in unit for the memory
manager that analyses the memory allocation/deallocation and which prints a memory usage report
after the program exits.

The unit that does this is calledheaptrc. If you want to use it, you should include it as the first unit
in you uses clause. Alternatively, you can supply the-gh switch to the compiler, and it will include
the unit automatically for you.

After the program exits, you will get a report looking like this:

Marked memory at 0040FA50 invalid
Wrong size : 128 allocated 64 freed

0x00408708
0x0040CB49
0x0040C481

Call trace for block 0x0040FA50 size 128
0x0040CB3D
0x0040C481

The output of the heaptrc unit is customizable by setting some variables.

version 2.0 only:Output can also be customized using environment variables.

You can find more information about the usage of theheaptrc unit in theUnit reference.

10.6 Line numbers in run-time error backtraces

Normally, when a run-time error occurs, you are presented with a list of addresses that represent the
call stack backtrace, i.e. the addresses of all procedures that were invoked when the run-time error
occurred.

This list is not very informative, so there exists a unit that generates the file names and line numbers
of the called procedures using the addresses of the stack backtrace. This unit is called lineinfo.

104

file:../units/units.html


CHAPTER 10. DEBUGGING YOUR PROGRAMS

You can use this unit by giving the-gl option to the compiler. The unit will be automatically
included. It is also possible to use the unit explicitly in youruses clause, but you must make sure
that you compile your program with debug info.

Here is an example program:

program testline;

procedure generateerror255;

begin
runerror(255);

end;

procedure generateanerror;

begin
generateerror255;

end;

begin
generateanerror;

end.

When compiled with-gl , the following output is generated:

Runtime error 255 at 0x0040BDE5
0x0040BDE5 GENERATEERROR255, line 6 of testline.pp
0x0040BDF0 GENERATEANERROR, line 13 of testline.pp
0x0040BE0C main, line 17 of testline.pp
0x0040B7B1

Which is more understandable than the normal message. Make sure that all units you use are com-
piled with debug info, because if they are not, no line number and filename can be found.

10.7 Combiningheaptrc and lineinfo

If you combine the lineinfo and the heaptrc information, then the output of theheaptrc unit will
contain the names of the files and line numbers of the procedures that occur in the stack backtrace.

In such a case, the output will look something like this:

Marked memory at 00410DA0 invalid
Wrong size : 128 allocated 64 freed

0x004094B8
0x0040D8F9 main, line 25 of heapex.pp
0x0040D231

Call trace for block 0x00410DA0 size 128
0x0040D8ED main, line 23 of heapex.pp
0x0040D231

If lines without filename/line-number occur, this means there is a unit which has no debug info
included. (in the above case, the getmem call itself)

105



Chapter 11

CGI programming in Free Pascal

In these days of heavy WWW traffic on the Internet, CGI scripts have become an important topic in
computer programming. While CGI programming can be done with almost any tool you wish, most
languages aren’t designed for it. Perl may be a notable exception, but perl is an interpreted language,
the executable is quite big, and hence puts a big load on the server machine.

Because of its simple, almost intuitive, string handling and its easy syntax, Pascal is very well suited
for CGI programming. Pascal allows you to quickly produce some results, while giving you all the
tools you need for more complex programming. The basic RTL routines in principle are enough to
get the job done, but you can create, with relatively little effort, some units which can be used as a
base for more complex CGI programming.

That’s why, in this chapter, we will discuss the basics of CGI in Free Pascal. In the subsequent, we
will assume that the server for which the programs are created, are based upon the NCSAhttpd
WWW server, as the examples will be based upon the NCSA method of CGI programming1. They
have been tested with theapache server onLINUX , and thexitami server on WINDOWS NT.

The two example programs in this chapter have been tested on the command line and worked, under
the condition that no spaces were present in the name and value pairs provided to them.

There is however, a faster and generally betteruncgi unit available, you can find it on the contributed
units page of the Free Pascal web site. It uses techniques discussed here, but in a generally more
efficient way, and it also provides some extra functionality, not discussed here.

11.1 Getting your data

Your CGI program must react on data the user has filled in on the form which your web-server gave
him. The Web server takes the response on the form, and feeds it to the CGI script.

There are essentially two ways of feeding the data to the CGI script. We will discuss both.

Data coming through standard input.
The first method of getting your data is through standard input. This method is invoked when the
form uses a form submission method ofPOST. The web browser sets three environment variables
REQUEST_METHOD, CONTENT_TYPEand CONTENT_LENGTH. It feeds then the results of the
different fields through standard input to the CGI script. All the Pascal program has to do is :

• Check the value of theREQUEST_METHODenvironment variable. Thegetenv function will

1... and its the only WWW-server I have to my disposition at the moment.

106



CHAPTER 11. CGI PROGRAMMING IN FREE PASCAL

retrieve this value this for you.

• Check the value of theCONTENT_TYPEenvironment variable.

• ReadCONTENT_LENGTHcharacters from standard input.read (c) with c of typechar
will take care of that.

if you know that the request method will always bePOST, and theCONTENT_TYPEwill be correct,
then you can skip the first two steps. The third step can be done easier: read characters until you
reach the end-of-file marker of standard input.

The following example shows how this can be achieved:

program cgi_post;

uses dos;

const max_data = 1000;

type datarec = record
name,value : string;
end;

var data : array[1..max_data] of datarec;
i,nrdata : longint;
c : char;
literal,aname : boolean;

begin
writeln (’Content-type: text/html’);
writeln;
if getenv(’REQUEST_METHOD’)<>’POST’ then

begin
writeln (’This script should be referenced with a METHOD of POST’);
write (’If you don’’t understand this, see this ’);
write (’< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
writeln (’/Docs/fill-out-forms/overview.html">forms overview</A>.’);
halt(1);
end;

if getenv(’CONTENT_TYPE’)<>’application/x-www-form-urlencoded’ then
begin
writeln (’This script can only be used to decode form results’);
halt(1)
end;

nrdata:=1;
aname:=true;
while not eof(input) do

begin
literal:=false;
read(c);
if c=’\’ then

begin
literal:=true;
read(c);
end;

107



CHAPTER 11. CGI PROGRAMMING IN FREE PASCAL

if literal or ((c<>’=’) and (c<>’&’)) then
with data[nrdata] do

if aname then name:=name+c else value:=value+c
else

begin
if c=’&’ then

begin
inc (nrdata);
aname:=true;
end

else
aname:=false;

end
end;

writeln (’<H1>Form Results :</H1>’);
writeln (’You submitted the following name/value pairs :’);
writeln (’<UL>’);
for i:=1 to nrdata do writeln (’<LI> ’,data[i].name,’ = ’,data[i].value);
writeln (’</UL>’);
end.

While this program isn’t shorter than the C program provided as an example at NCSA, it doesn’t
need any other units. everythig is done using standard Pascal procedures2.

Note that this program has a limitation: the length of names and values is limited to 255 characters.
This is due to the fact that strings in Pascal have a maximal length of 255. It is of course easy to
redefine thedatarec record in such a way that longer values are allowed. In case you have to read
the contents of aTEXTAREAform element, this may be needed.

Data passed through an environment variable
If your form uses theGETmethod of passing its data, the CGI script needs to read theQUERY_STRING
environment variable to get its data. Since this variable can, and probably will, be more than 255
characters long, you will not be able to use normal string methods, present in pascal. Free Pas-
cal implements thepchar type, which is a pointer to a null-terminated array of characters. And,
fortunately, Free Pascal has astringsunit, which eases the use of thepchar type.

The following example illustrates what to do in case of a method ofGET

program cgi_get;

uses strings,linux;

const max_data = 1000;

type datarec = record
name,value : string;
end;

var data : array[1..max_data] of datarec;
i,nrdata : longint;
p : PChar;

2actually, this program will give faulty results, since spaces in the input are converted to plus signs by the web browser.
The program doesn’t check for this, but that is easy to change. The main concern here is to give the working principle.

108

file:../strings/strings.html


CHAPTER 11. CGI PROGRAMMING IN FREE PASCAL

literal,aname : boolean;

begin
Writeln (’Content-type: text/html’);
Writeln;
if StrComp(GetEnv(’REQUEST_METHOD’),’POST’)<>0 then

begin
Writeln (’This script should be referenced with a METHOD of GET’);
write (’If you don’’t understand this, see this ’);
write (’< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
Writeln (’/Docs/fill-out-forms/overview.html">forms overview</A>.’);
halt(1);
end;

p:=GetEnv(’QUERY_STRING’);
nrdata:=1;
aname:=true;
while p^<>#0 do

begin
literal:=false;
if p^=’\’ then

begin
literal:=true;
inc(longint(p));
end;

if ((p^<>’=’) and (p^<>’&’)) or literal then
with data[nrdata] do

if aname then name:=name+p^ else value:=value+p^
else

begin
if p^=’&’ then

begin
inc (nrdata);
aname:=true;
end

else
aname:=false;

end;
inc(longint(p));
end;

Writeln (’<H1>Form Results :</H1>’);
Writeln (’You submitted the following name/value pairs :’);
Writeln (’<UL>’);
for i:=1 to nrdata do writeln (’<LI> ’,data[i].name,’ = ’,data[i].value);
Writeln (’</UL>’);
end.

Although it may not be written in the most elegant way, this program does the same thing as the
previous one. It also suffers from the same drawback, namely the limited length of thevalue field
of thedatarec .

This drawback can be remedied by redefiningdatarec as follows:

type datarec = record;
name,value : pchar;

end;

109



CHAPTER 11. CGI PROGRAMMING IN FREE PASCAL

and assigning at run time enough space to keep the contents of the value field. This can be done with
a

getmem (data[nrdata].value,needed_number_of_bytes);

call. After that you can do a

strlcopy (data[nrdata].value,p,needed_number_of_bytes);

to copy the data into place.

You may have noticed the following unorthodox call :

inc(longint(p));

Free Pascal doesn’t give you pointer arithmetic as in C. However,longints andpointers have
the same length (namely 4 bytes). Doing a type-cast to alongint allows you to do arithmetic on
thepointer .

Note however, that this is a non-portable call. This may work on the I386 processor, but not on a
ALPHA processor (where a pointer is 8 bytes long). This will be remedied in future releases of Free
Pascal.

11.2 Producing output

The previous section concentrated mostly on getting input from the web server. To send the reply to
the server, you don’t need to do anything special.You just print your data on standard output, and the
Web-server will intercept this, and send your output to the WWW-client waiting for it.

You can print anything you want, the only thing you must take care of is that you supply aContents-type
line, followed by an empty line, as follows:

Writeln (’Content-type: text/html’);
Writeln;
{ ...start output of the form... }

And that’s all there is to it !

11.3 I’m under Windows, what now ?

Under Windows the system of writing CGI scripts can be totally different. If you use Free Pascal
under Windows then you also should be able to do CGI programming, but the above instructions may
not work. They are known to work for thexitami server, however.

If some kind soul is willing to write a section on CGI programming under Windows for other servers,
I’d be willing to include it here.

110



Appendix A

Alphabetical listing of command-line
options

The following is alphabetical listing of all command-line options, as generated by the compiler:

Free Pascal Compiler version 1.0.5 [2001/10/29] for i386
Copyright (c) 1993-2000 by Florian Klaempfl
/usr/local/lib/fpc/1.0.5/fpc [options] <inputfile> [options]
put + after a boolean switch option to enable it, - to disable it

-a the compiler doesn’t delete the generated assembler file
-al list sourcecode lines in assembler file
-ar list register allocation/release info in assembler file
-at list temp allocation/release info in assembler file

-b generate browser info
-bl generate local symbol info

-B build all modules
-C<x> code generation options:

-CD create also dynamic library (not supported)
-Ch<n> <n> bytes heap (between 1023 and 67107840)
-Ci IO-checking
-Cn omit linking stage
-Co check overflow of integer operations
-Cr range checking
-Cs<n> set stack size to <n>
-Ct stack checking
-CX create also smartlinked library

-d<x> defines the symbol <x>
-e<x> set path to executable
-E same as -Cn
-F<x> set file names and paths:

-FD<x> sets the directory where to search for compiler utilities
-Fe<x> redirect error output to <x>
-FE<x> set exe/unit output path to <x>
-Fi<x> adds <x> to include path
-Fl<x> adds <x> to library path
-FL<x> uses <x> as dynamic linker
-Fo<x> adds <x> to object path
-Fr<x> load error message file <x>
-Fu<x> adds <x> to unit path

111



APPENDIX A. ALPHABETICAL LISTING OF COMMAND-LINE OPTIONS

-FU<x> set unit output path to <x>, overrides -FE
-g generate debugger information:

-gg use gsym
-gd use dbx
-gh use heap trace unit (for memory leak debugging)
-gl use line info unit to show more info for backtraces
-gc generate checks for pointers

-i information
-iD return compiler date
-iV return compiler version
-iSO return compiler OS
-iSP return compiler processor
-iTO return target OS
-iTP return target processor

-I<x> adds <x> to include path
-k<x> Pass <x> to the linker
-l write logo
-n don’t read the default config file
-o<x> change the name of the executable produced to <x>
-pg generate profile code for gprof (defines FPC_PROFILE)
-P use pipes instead of creating temporary assembler files
-S<x> syntax options:

-S2 switch some Delphi 2 extensions on
-Sc supports operators like C (*=,+=,/= and -=)
-sa include assertion code.
-Sd tries to be Delphi compatible
-Se<x> compiler stops after the <x> errors (default is 1)
-Sg allow LABEL and GOTO
-Sh Use ansistrings
-Si support C++ styled INLINE
-Sm support macros like C (global)
-So tries to be TP/BP 7.0 compatible
-Sp tries to be gpc compatible
-Ss constructor name must be init (destructor must be done)
-St allow static keyword in objects

-s don’t call assembler and linker (only with -a)
-u<x> undefines the symbol <x>
-U unit options:

-Un don’t check the unit name
-Ur generate release unit files
-Us compile a system unit

-v<x> Be verbose. <x> is a combination of the following letters:
e : Show errors (default) d : Show debug info
w : Show warnings u : Show unit info
n : Show notes t : Show tried/used files
h : Show hints m : Show defined macros
i : Show general info p : Show compiled procedures
l : Show linenumbers c : Show conditionals
a : Show everything 0 : Show nothing (except errors)
b : Show all procedure r : Rhide/GCC compatibility mode

declarations if an error x : Executable info (Win32 only)
occurs

-X executable options:
-Xc link with the c library

112



APPENDIX A. ALPHABETICAL LISTING OF COMMAND-LINE OPTIONS

-Xs strip all symbols from executable
-XD try to link dynamic (defines FPC_LINK_DYNAMIC)
-XS try to link static (default) (defines FPC_LINK_STATIC)
-XX try to link smart (defines FPC_LINK_SMART)

Processor specific options:
-A<x> output format:

-Aas assemble using GNU AS
-Aasaout assemble using GNU AS for aout (Go32v1)
-Anasmcoff coff (Go32v2) file using Nasm
-Anasmelf elf32 (Linux) file using Nasm
-Anasmobj obj file using Nasm
-Amasm obj file using Masm (Microsoft)
-Atasm obj file using Tasm (Borland)
-Acoff coff (Go32v2) using internal writer
-Apecoff pecoff (Win32) using internal writer

-R<x> assembler reading style:
-Ratt read AT&T style assembler
-Rintel read Intel style assembler
-Rdirect copy assembler text directly to assembler file

-O<x> optimizations:
-Og generate smaller code
-OG generate faster code (default)
-Or keep certain variables in registers
-Ou enable uncertain optimizations (see docs)
-O1 level 1 optimizations (quick optimizations)
-O2 level 2 optimizations (-O1 + slower optimizations)
-O3 level 3 optimizations (same as -O2u)
-Op<x> target processor:

-Op1 set target processor to 386/486
-Op2 set target processor to Pentium/PentiumMMX (tm)
-Op3 set target processor to PPro/PII/c6x86/K6 (tm)

-T<x> Target operating system:
-TGO32V1 version 1 of DJ Delorie DOS extender
-TGO32V2 version 2 of DJ Delorie DOS extender
-TLINUX Linux
-TOS2 OS/2 2.x
-TSUNOS SunOS/Solaris
-TWin32 Windows 32 Bit
-TBeOS BeOS

-W<x> Win32 target options
-WB<x> Set Image base to Hexadecimal <x> value
-WC Specify console type application
-WD Use DEFFILE to export functions of DLL or EXE
-WF Specify full-screen type application (OS/2 only)
-WG Specify graphic type application
-WN Do not generate relocation code (necessary for debugging)
-WR Generate relocation code

-? shows this help
-h shows this help without waiting

113



Appendix B

Alphabetical list of reserved words

absolute
abstract
and
array
as
asm
assembler
begin
break
case
cdecl
class
const
constructor
continue
destructor
dispose
div
do
downto
else
end
except
exit
export
exports
external
fail
false
far

file
finally
for
forward
function
goto
if
implementation
in
index
inherited
initialization
inline
interface
interrupt
is
label
library
mod
name
near
new
nil
not
object
of
on
operator
or
otherwise

packed
popstack
private
procedure
program
property
protected
public
raise
record
repeat
self
set
shl
shr
stdcall
string
then
to
true
try
type
unit
until
uses
var
virtual
while
with
xor

114



Appendix C

Compiler messages

This appendix is meant to list all the compiler messages. The list of messages is generated from he
compiler source itself, and should be faitly complete. At this point, only assembler errors are not in
the list.

C.1 General compiler messages

This section gives the compiler messages which are not fatal, but which display useful information.
The number of such messages can be controlled with the various verbosity level-v switches.

Compiler: arg1 When the-vt switch is used, this line tells you what compiler is used.

Compiler OS: arg1 When the-vd switch is used, this line tells you what the source operating
system is.

Info: Target OS: arg1 When the-vd switch is used, this line tells you what the target operating
system is.

Using executable path: arg1When the-vt switch is used, this line tells you where the compiler
looks for it’s binaries.

Using unit path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for compiled units. You can set this path with the-Fu

Using include path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for it’s include files (files used in{$I xxx} statements). You can set this path with the-I
option.

Using library path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for the libraries. You can set this path with the-Fl option.

Using object path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for object files you link in (files used in{$L xxx} statements). You can set this path with the
-Fo option.

Info: arg1 Lines compiled, arg2 secWhen the-vi switch is used, the compiler reports the number
of lines compiled, and the time it took to compile them (real time, not program time).

Fatal: No memory left The compiler doesn’t have enough memory to compile your program. There
are several remedies for this:

115



APPENDIX C. COMPILER MESSAGES

• If you’re using the build option of the compiler, try compiling the different units manu-
ally.

• If you’re compiling a huge program, split it up in units, and compile these separately.

• If the previous two don’t work, recompile the compiler with a bigger heap (you can use
the-Ch option for this,-Ch , (see page5.1))

Info: Writing Resource String Table file: arg1 This message is shown when the compiler writes
the Resource String Table file containing all the resource strings for a program.

Error: Writing Resource String Table file: arg1 This message is shown when the compiler en-
countered an error when writing the Resource String Table file

Info: Fatal: Prefix for Fatal Errors

Info: Error: Prefix for Errors

Info: Warning: Prefix for Warnings

Info: Note: Prefix for Notes

Info: Hint: Prefix for Hints

C.2 Scanner messages.

This section lists the messages that the scanner emits. The scanner takes care of the lexical structure
of the pascal file, i.e. it tries to find reserved words, strings, etc. It also takes care of directives and
conditional compiling handling.

Fatal: Unexpected end of file this typically happens in one of the following cases :

• The source file ends before the finalend. statement. This happens mostly when the
begin andend statements aren’t balanced;

• An include file ends in the middle of a statement.

• A comment wasn’t closed.

Fatal: String exceeds lineYou forgot probably to include the closing ’ in a string, so it occupies
multiple lines.

Fatal: illegal character arg1 (arg2) An illegal character was encountered in the input file.

Fatal: Syntax error, arg1 expected but arg2 found This indicates that the compiler expected a dif-
ferent token than the one you typed. It can occur almost everywhere where you make a mistake
against the pascal language.

Start reading includefile arg1 When you provide the-vt switch, the compiler tells you when it
starts reading an included file.

Warning: Comment level arg1 found When the-vw switch is used, then the compiler warns you
if it finds nested comments. Nested comments are not allowed in Turbo Pascal and can be a
possible source of errors.

Note: $F directive (FAR) ignored TheFARdirective is a 16-bit construction which is recorgnised
but ignored by the compiler, since it produces 32 bit code.

Note: Stack check is global under Linux Stack checking with the-Cs switch is ignored under
LINUX , sinceLINUX does this for you. Only displayed when-vn is used.

116



APPENDIX C. COMPILER MESSAGES

Note: Ignored compiler switch arg1 With -vn on, the compiler warns if it ignores a switch

Warning: Illegal compiler switch arg1 You included a compiler switch (i.e.{$... } ) which
the compiler doesn’t know.

Warning: This compiler switch has a global effect When -vw is used, the compiler warns if a
switch is global.

Error: Illegal char constant This happens when you specify a character with its ASCII code, as in
#96 , but the number is either illegal, or out of range. The range is 1-255.

Fatal: Can’t open file arg1 Free Pascal cannot find the program or unit source file you specified on
the command line.

Fatal: Can’t open include file arg1 Free Pascal cannot find the source file you specified in a{$include
..} statement.

Error: Too many $ENDIFs or $ELSEs Your {$IFDEF ..} and {$ENDIF} statements aren’t
balanced.

Warning: Records fields can be aligned to 1,2,4,8,16 or 32 bytes onlyYou are specifying the{$PACKRECORDS
n} with an illegal value forn. Only 1, 2, 4, 8, 16 and 32 are valid in this case.

Warning: Enumerated can be saved in 1,2 or 4 bytes onlyYou are specifying the{$PACKENUM
n} with an illegal value forn. Only 1,2 or 4 are valid in this case.

Error: $ENDIF expected for arg1 arg2 defined in line arg3 Your conditional compilation state-
ments are unbalanced.

Error: Syntax error while parsing a conditional compiling expression There is an error in the
expression following the{$if ..} compiler directive.

Error: Evaluating a conditional compiling expression There is an error in the expression follow-
ing the{$if ..} compiler directive.

Warning: Macro contents is cut after char 255 to evalute expressionThe contents of macros canno
be longer than 255 characters. This is a safety in the compiler, to prevent buffer overflows. This
is shown as a warning, i.e. when the-vw switch is used.

Error: ENDIF without IF(N)DEF Your {$IFDEF ..} and {$ENDIF} statements aren’t balanced.

Fatal: User defined: arg1 A user defined fatal error occurred. see also theProgrammers guide

Error: User defined: arg1 A user defined error occurred. see also theProgrammers guide

Warning: User defined: arg1 A user defined warning occurred. see also theProgrammers guide

Note: User defined: arg1 A user defined note was encountered. see also theProgrammers guide

Hint: User defined: arg1 A user defined hint was encountered. see also theProgrammers guide

Info: User defined: arg1 User defined information was encountered. see also theProgrammers
guide

Error: Keyword redefined as macro has no effect You cannot redefine keywords with macros.

Fatal: Macro buffer overflow while reading or expanding a macro Your macro or it’s result was
too long for the compiler.

Warning: Extension of macros exceeds a deep of 16.When expanding a macro macros have been
nested to a level of 16. The compiler will expand no further, since this may be a sign that
recursion is used.

117

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html


APPENDIX C. COMPILER MESSAGES

Error: compiler switches aren’t allowed in (* ... *) styled comments Compiler switches should al-
ways be between{ } comment delimiters.

Handling switch "arg1" When you set debugging info on (-vd ) the compiler tells you when it is
evaluating conditional compile statements.

ENDIF arg1 found When you turn on conditional messages(-vc ), the compiler tells you where it
encounters conditional statements.

IFDEF arg1 found, arg2 When you turn on conditional messages(-vc ), the compiler tells you
where it encounters conditional statements.

IFOPT arg1 found, arg2 When you turn on conditional messages(-vc ), the compiler tells you
where it encounters conditional statements.

IF arg1 found, arg2 When you turn on conditional messages(-vc ), the compiler tells you where it
encounters conditional statements.

IFNDEF arg1 found, arg2 When you turn on conditional messages(-vc ), the compiler tells you
where it encounters conditional statements.

ELSE arg1 found, arg2 When you turn on conditional messages(-vc ), the compiler tells you where
it encounters conditional statements.

Skipping until... When you turn on conditional messages(-vc ), the compiler tells you where it
encounters conditional statements, and whether it is skipping or compiling parts.

Info: Press <return> to continue When the-vi switch is used, the compiler stops compilation
and waits for theEnter key to be pressed when it encounters a{$STOP} directive.

Warning: Unsupported switch arg1 When warings are turned on (-vw ) the compiler warns you
about unsupported switches. This means that the switch is used in Delphi or Turbo Pascal, but
not in Free Pascal

Warning: Illegal compiler directive arg1 When warings are turned on (-vw ) the compiler warns
you about unrecognised switches. For a list of recognised switches,Programmers guide

Back in arg1 When you use (-vt ) the compiler tells you when it has finished reading an include
file.

Warning: Unsupported application type: arg1 You get this warning, ff you specify an unknown
application type with the directive{$APPTYPE}

Warning: APPTYPE isn’t support by the target OS The{$APPTYPE} directive is supported by
win32 applications only.

Warning: DESCRIPTION is only supported for OS2 and Win32 The {$DESCRIPTION} dir-
ective is only supported for OS2 and Win32 targets.

Note: VERSION is not supported by target OS. The {$VERSION} directive is only supported
by win32 target.

Note: VERSION only for exes or DLLs The {$VERSION} directive is only used for executable
or DLL sources.

Warning: Wrong format for VERSION directive arg1 The{$VERSION} directive format is ma-
jorversion.minorversion where majorversion and minorversion are words.

Warning: Unsupported assembler style specified arg1When you specify an assembler mode with
the{$ASMMODE xxx} the compiler didn’t recognize the mode you specified.

118

file:../prog/prog.html


APPENDIX C. COMPILER MESSAGES

Warning: ASM reader switch is not possible inside asm statement, arg1 will be effective only for next
It is not possible to switch from one assembler reader to another inside an assmebler block.
The new reader will be used for next assembler statement only.

Error: Wrong switch toggle, use ON/OFF or +/- You need to use ON or OFF or a + or - to toggle
the switch

Error: Resource files are not supported for this target The target you are compiling for doesn’t
support resource files. The only targets which can use resource files are Win32 and OS/2
(EMX) currently

Warning: Include environment arg1 not found in environment The included environment vari-
able can’t be found in the environment, it’ll be replaced by an empty string instead.

Error: Illegal value for FPU register limit Valid values for this directive are 0..8 and NORMAL/DE-
FAULT

Warning: Only one resource file is supported for this target The target you are compiling for sup-
ports only one resource file. This is the case of OS/2 (EMX) currently. The first resource file
found is used, the others are discarded.

Warning: Macro support has been turned off A macro declaration has been found, but macro
support is currently off, so the declaration will be ignored. To turn macro support on com-
pile with -Sm on the commandline or add{$MACRO ON}in the source

Warning: APPID is only supported for PalmOS The {$APPID} directive is only supported for
the PalmOS target.

Warning: APPNAME is only supported for PalmOS The {$APPNAME} directive is only sup-
ported for the PalmOS target.

Error: Constant strings can’t be longer than 255 chars A single string constant can contain at
most 255 chars. Try splitting up the string in multiple smaller parts and concatenate them
with a + operator.

C.3 Parser messages

This section lists all parser messages. The parser takes care of the semantics of you language, i.e. it
determines if your pascal constructs are correct.

Error: Parser - Syntax Error An error against the Turbo Pascal language was encountered. This
happens typically when an illegal character is found in the sources file.

Warning: Procedure type FAR ignored This is a warning.FAR is a construct for 8 or 16 bit pro-
grams. Since the compile generates 32 bit programs, it ignores this directive.

Warning: Procedure type NEAR ignored This is a warning.NEARis a construct for 8 or 16 bit
programs. Since the compile generates 32 bit programs, it ignores this directive.

Warning: Procedure type INTERRUPT ignored for not i386 This is a warning.INTERRUPTis
a i386 specific construct and is ignored for other processors.

Error: INTERRUPT procedure can’t be nested An INTERRUPTprocedure must be global.

Warning: Procedure type arg1 ignored This is a warning.REGISTER,REINTRODUCEis ignored
by FPC programs for now. This is introduced first for Delphi compatibility.

119



APPENDIX C. COMPILER MESSAGES

Error: Not all declarations of arg1 are declared with OVERLOAD When you want to use over-
loading using theOVERLOADdirective, then all declarations need to haveOVERLOADspe-
cified.

Error: No DLL File specified No longer in use.

Error: Duplicate exported function name arg1 Exported function names inside a specific DLL
must all be different

Error: Duplicate exported function index arg1 Exported function names inside a specific DLL
must all be different

Error: Invalid index for exported function DLL function index must be in the range1..$FFFF

Warning: Relocatable DLL or executable arg1 debug info does not work, disabled.

Warning: To allow debugging for win32 code you need to disable relocation with -WN optionStabs
info is wrong for relocatable DLL or EXES use -WN if you want to debug win32 executables.

Error: Constructor name must be INIT You are declaring a constructor with a name which isn’t
init , and the-Ss switch is in effect. See the-Ss switch (-Ss , (see page5.1)).

Error: Destructor name must be DONE You are declaring a destructor with a name which isn’t
done , and the-Ss switch is in effect. See the-Ss switch (-Ss , (see page5.1)).

Error: Illegal open parameter You are trying to use the wrong type for an open parameter.

Error: Procedure type INLINE not supported You tried to compile a program with C++ style
inlining, and forgot to specify the-Si option (-Si , (see page5.1)). The compiler doesn’t
support C++ styled inlining by default.

Warning: Private methods shouldn’t be VIRTUAL You declared a method in the private part of
a object (class) asvirtual . This is not allowed. Private methods cannot be overridden
anyway.

Warning: Constructor should be public Constructors must be in the ’public’ part of an object
(class) declaration.

Warning: Destructor should be public Destructors must be in the ’public’ part of an object (class)
declaration.

Note: Class should have one destructor onlyYou can declare only one destructor for a class.

Error: Local class definitions are not allowed Classes must be defined globally. They cannot be
defined inside a procedure or function

Fatal: Anonym class definitions are not allowedAn invalid object (class) declaration was encountered,
i.e. an object or class without methods that isn’t derived from another object or class. For ex-
ample:

Type o = object
a : longint;
end;

will trigger this error.

Error: The object arg1 has no VMT

Error: Illegal parameter list You are calling a function with parameters that are of a different type
than the declared parameters of the function.

120



APPENDIX C. COMPILER MESSAGES

Error: Wrong parameter type specified for arg no. arg1 There is an error in the parameter list of
the function or procedure. The compiler cannot determine the error more accurate than this.

Error: Wrong amount of parameters specified There is an error in the parameter list of the func-
tion or procedure, the number of parameters is not correct.

Error: overloaded identifier arg1 isn’t a function The compiler encountered a symbol with the
same name as an overloaded function, but it isn’t a function it can overload.

Error: overloaded functions have the same parameter listYou’re declaring overloaded functions,
but with the same parameter list. Overloaded function must have at least 1 different parameter
in their declaration.

Error: function header doesn’t match the forward declaration arg1 You declared a function with
same parameters but different result type or function modifiers.

Error: function header arg1 doesn’t match forward : var name changes arg2 => arg3You de-
clared the function in theinterface part, or with theforward directive, but define it with
a different parameter list.

Note: Values in enumeration types have to be ascendingFree Pascal allows enumeration construc-
tions as in C. Given the following declaration two declarations:

type a = (A_A,A_B,A_E:=6,A_UAS:=200);
type a = (A_A,A_B,A_E:=6,A_UAS:=4);

The second declaration would produce an error.A_UASneeds to have a value higher than
A_E, i.e. at least 7.

Note: Interface and implementation names are different arg1 => arg2This note warns you if the
implementation and interface names of a functions are different, but they have the same mangled
name. This is important when using overloaded functions (but should produce no error).

Error: With can not be used for variables in a different segment With stores a variable locally
on the stack, but this is not possible if the variable belongs to another segment.

Error: function nesting > 31 You can nest function definitions only 31 times.

Error: range check error while evaluating constants The constants are out of their allowed range.

Warning: range check error while evaluating constants The constants are out of their allowed
range.

Error: duplicate case label You are specifying the same label 2 times in acase statement.

Error: Upper bound of case range is less than lower boundThe upper bound of acase label is
less than the lower bound and this is useless

Error: typed constants of classes are not allowedYou cannot declare a constant of type class or
object.

Error: functions variables of overloaded functions are not allowed You are trying to assign an
overloaded function to a procedural variable. This isn’t allowed.

Error: string length must be a value from 1 to 255 The length of a string in Pascal is limited to
255 characters. You are trying to declare a string with length lower than 1 or greater than 255
(This is not true forLongstrings andAnsiStrings .

121



APPENDIX C. COMPILER MESSAGES

Warning: use extended syntax of NEW and DISPOSE for instances of objectsIf you have a pointer
a to a class type, then the statementnew(a) will not initialize the class (i.e. the constructor
isn’t called), although space will be allocated. you should issue thenew(a,init) statement.
This will allocate space, and call the constructor of the class.

Warning: use of NEW or DISPOSE for untyped pointers is meaningless

Error: use of NEW or DISPOSE is not possible for untyped pointers You cannot usenew(p)
or dispose(p) if p is an untyped pointer because no size is associated to an untyped pointer.
Accepted for compatibility intp anddelphi modes.

Error: class identifier expected This happens when the compiler scans a procedure declaration that
contains a dot, i.e., a object or class method, but the type in front of the dot is not a known
type.

Error: type identifier not allowed here You cannot use a type inside an expression.

Error: method identifier expected This identifier is not a method. This happens when the com-
piler scans a procedure declaration that contains a dot, i.e., a object or class method, but the
procedure name is not a procedure of this type.

Error: function header doesn’t match any method of this class arg1This identifier is not a method.
This happens when the compiler scans a procedure declaration that contains a dot, i.e., a object
or class method, but the procedure name is not a procedure of this type.

procedure/function arg1 When using the-vp switch, the compiler tells you when it starts pro-
cessing a procedure or function implementation.

Error: Illegal floating point constant The compiler expects a floating point expression, and gets
something else.

Error: FAIL can be used in constructors only You are using theFAIL instruction outside a con-
structor method.

Error: Destructors can’t have parameters You are declaring a destructor with a parameter list.
Destructor methods cannot have parameters.

Error: Only class methods can be referred with class referencesThis error occurs in a situation
like the following:

Type :
Tclass = Class of Tobject;

Var C : TClass;

begin
...
C.free

Free is not a class method and hence cannot be called with a class reference.

Error: Only class methods can be accessed in class methodsThis is related to the previous error.
You cannot call a method of an object from a inside a class method. The following code would
produce this error:

122



APPENDIX C. COMPILER MESSAGES

class procedure tobject.x;

begin
free

Because free is a normal method of a class it cannot be called from a class method.

Error: Constant and CASE types do not match One of the labels is not of the same type as the
case variable.

Error: The symbol can’t be exported from a library You can only export procedures and func-
tions when you write a library. You cannot export variables or constants.

Warning: An inherited method is hidden by arg1 A method that is declaredvirtual in a par-
ent class, should be overridden in the descendent class with theoverride directive. If you
don’t specify theoverride directive, you will hide the parent method; you will not override
it.

Error: There is no method in an ancestor class to be overridden: arg1You try to override a
virtual method of a parent class that doesn’t exist.

Error: No member is provided to access property You specified noread directive for a prop-
erty.

Warning: Stored prorperty directive is not yet implemented Thestored directive is not yet im-
plemented

Error: Illegal symbol for property access There is an error in theread or write directives for
an array property. When you declare an array property, you can only access it with procedures
and functions. The following code woud cause such an error.

tmyobject = class
i : integer;
property x [i : integer]: integer read I write i;

Error: Cannot access a protected field of an object hereFields that are declared in aprotected
section of an object or class declaration cannot be accessed outside the module wher the object
is defined, or outside descendent object methods.

Error: Cannot access a private field of an object hereFields that are declared in aprivate sec-
tion of an object or class declaration cannot be accessed outside the module where the class is
defined.

Warning: overloaded method of virtual method should be virtual: arg1 If you declare overloaded
methods in a class, then they should either all be virtual, or none. You shouldn’t mix them.

Warning: overloaded method of non-virtual method should be non-virtual: arg1 If you declare
overloaded methods in a class, then they should either all be virtual, or none. You shouldn’t
mix them.

Error: overloaded methods which are virtual must have the same return type: arg1 If you de-
clare virtual overloaded methods in a class definition, they must have the same return type.

Error: EXPORT declared functions can’t be nested You cannot declare a function or procedure
within a function or procedure that was declared as an export procedure.

123



APPENDIX C. COMPILER MESSAGES

Error: methods can’t be EXPORTed You cannot declare a procedure that is a method for an ob-
ject asexport ed. That is, your methods cannot be called from a C program.

Error: call by var parameters have to match exactly: Got arg1 expected arg2When calling a func-
tion declared withvar parameters, the variables in the function call must be of exactly the
same type. There is no automatic type conversion.

Error: Class isn’t a parent class of the current class When calling inherited methods, you are try-
ing to call a method of a strange class. You can only call an inherited method of a parent class.

Error: SELF is only allowed in methods You are trying to use theself parameter outside an ob-
ject’s method. Only methods get passed theself parameters.

Error: methods can be only in other methods called direct with type identifier of the classA con-
struction likesometype.somemethod is only allowed in a method.

Error: Illegal use of ’:’ You are using the format: (colon) 2 times on an expression that is not a
real expression.

Error: range check error in set constructor or duplicate set element The declaration of a set con-
tains an error. Either one of the elements is outside the range of the set type, either two of the
elements are in fact the same.

Error: Pointer to object expected You specified an illegal type in aNewstatement. The extended
synax ofNewneeds an object as a parameter.

Error: Expression must be constructor call When using the extended syntax ofnew, you must
specify the constructor method of the object you are trying to create. The procedure you
specified is not a constructor.

Error: Expression must be destructor call When using the extended syntax ofdispose , you
must specify the destructor method of the object you are trying to dispose of. The proced-
ure you specified is not a destructor.

Error: Illegal order of record elements When declaring a constant record, you specified the fields
in the wrong order.

Error: Expression type must be class or record typeA with statement needs an argument that
is of the typerecord or class . You are usingwith on an expression that is not of this
type.

Error: Procedures can’t return a value In Free Pascal, you can specify a return value for a func-
tion when using theexit statement. This error occurs when you try to do this with a proced-
ure. Procedures cannot return a value.

Error: constructors and destructors must be methods You’re declaring a procedure as destructor
or constructor, when the procedure isn’t a class method.

Error: Operator is not overloaded You’re trying to use an overloaded operator when it isn’t over-
loaded for this type.

Error: Impossible to overload assignment for equal typesYou can not overload assignment for
types that the compiler considers as equal.

Error: Impossible operator overload The combination of operator, arguments and return type are
incompatible.

Error: Re-raise isn’t possible there You are trying to raise an exception where it isn’t allowed.
You can only raise exceptions in anexcept block.

124



APPENDIX C. COMPILER MESSAGES

Error: The extended syntax of new or dispose isn’t allowed for a classYou cannot generate an
instance of a class with the extended syntax ofnew. The constructor must be used for that. For
the same reason, you cannot callDispose to de-allocate an instance of a class, the destructor
must be used for that.

Error: Assembler incompatible with function return type You’re trying to implement aassembler
function, but the return type of the function doesn’t allow that.

Error: Procedure overloading is switched off When using the-So switch, procedure overloading
is switched off. Turbo Pascal does not support function overloading.

Error: It is not possible to overload this operator (overload = instead) You are trying to overload
an operator which cannot be overloaded. The following operators can be overloaded :

+, -, *, /, =, >, <, <=, >=, is, as, in, **, :=

Error: Comparative operator must return a boolean value When overloading the= operator, the
function must return a boolean value.

Error: Only virtual methods can be abstract You are declaring a method as abstract, when it isn’t
declared to be virtual.

Fatal: Use of unsupported feature! You’re trying to force the compiler into doing something it
cannot do yet.

Error: The mix of CLASSES and OBJECTS isn’t allowed You cannot deriveobjects andclasses
intertwined . That is, a class cannot have an object as parent and vice versa.

Warning: Unknown procedure directive had to be ignored: arg1 The procedure direcive you se-
cified is unknown. Recognised procedure directives arecdecl , stdcall , popstack ,
pascal register , export .

Error: absolute can only be associated to ONE variableYou cannot specify more than one vari-
able before theabsolute directive. Thus, the following construct will provide this error:

Var Z : Longint;
X,Y : Longint absolute Z;

absolute can only be associated a var or constThe address of aabsolute directive can only
point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: absolute can only be associated a var or constThe address of aabsolute directive can
only point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: Only ONE variable can be initialized You cannot specify more than one variable with a
initial value in Delphi syntax.

125



APPENDIX C. COMPILER MESSAGES

Error: Abstract methods shouldn’t have any definition (with function body) Abstract methods can
only be declared, you cannot implement them. They should be overridden by a descendant
class.

Error: This overloaded function can’t be local (must be exported) You are defining a overloaded
function in the implementation part of a unit, but there is no corresponding declaration in the
interface part of the unit.

Warning: Virtual methods are used without a constructor in arg1 If you declare objects or classes
that contain virtual methods, you need to have a constructor and destructor to initialize them.
The compiler encountered an object or class with virtual methods that doesn’t have a construct-
or/destructor pair.

Macro defined: arg1 When-vm is used, the compiler tells you when it defines macros.

Macro undefined: arg1 When-vm is used, the compiler tells you when it undefines macros.

Macro arg1 set to arg2 When-vm is used, the compiler tells you what values macros get.

Info: Compiling arg1 When you turn on information messages (-vi ), the compiler tells you what
units it is recompiling.

Parsing interface of unit arg1 This tells you that the reading of the interface of the current unit
starts

Parsing implementation of arg1 This tells you that the code reading of the implementation of the
current unit, library or program starts

Compiling arg1 for the second time When you request debug messages (-vd ) the compiler tells
you what units it recompiles for the second time.

Error: Array properties aren’t allowed here You cannot use array properties at that point in the
source.

Error: No property found to override You want to overrride a property of a parent class, when
there is, in fact, no such property in the parent class.

Error: Only one default property is allowed, found inherited default property in class arg1 You
specified a property asDefault , but a parent class already has a default property, and a class
can have only one default property.

Error: The default property must be an array property Only array properties of classes can be
madedefault properties.

Error: Virtual constructors are only supported in class object model You cannot have virtual con-
structors in objects. You can only have them in classes.

Error: No default property available You try to access a default property of a class, but this class
(or one of it’s ancestors) doesn’t have a default property.

Error: The class can’t have a published section, use the $M+ switchIf you want apublished
section in a class definition, you must use the{$M+} switch, whch turns on generation of type
information.

Error: Forward declaration of class arg1 must be resolved here to use the class as ancestorTo
be able to use an object as an ancestor object, it must be defined first. This error occurs in the
following situation:

126



APPENDIX C. COMPILER MESSAGES

Type ParentClas = Class;
ChildClass = Class(ParentClass)

...
end;

WhereParentClass is declared but not defined.

Error: Local operators not supported You cannot overload locally, i.e. inside procedures or func-
tion definitions.

Error: Procedure directive arg1 not allowed in interface section This procedure directive is not
allowed in theinterface section of a unit. You can only use it in theimplementation
section.

Error: Procedure directive arg1 not allowed in implementation section This procedure directive
is not defined in theimplementation section of a unit. You can only use it in theinterface
section.

Error: Procedure directive arg1 not allowed in procvar declaration This procedure directive can-
not be part of a procedural or function type declaration.

Error: Function is already declared Public/Forward arg1 You will get this error if a function is
defined asforward twice. Or it is once in theinterface section, and once as aforward
declaration in theimplmentation section.

Error: Can’t use both EXPORT and EXTERNAL These two procedure directives are mutually
exclusive

Error: NAME keyword expected The definition of an external variable needs aname clause.

Warning: arg1 not yet supported inside inline procedure/function Inline procedures don’t sup-
port this declaration.

Warning: Inlining disabled Inlining of procedures is disabled.

Info: Writing Browser log arg1 When information messages are on, the compiler warns you when
it writes the browser log (generated with the{$Y+ } switch).

Hint: Maybe pointer dereference is missing The compiler thinks that a pointer may need a derefer-
ence.

Fatal: Selected assembler reader not supportedThe selected assembler reader (with{$ASMMODE
xxx} is not supported. The compiler can be compiled with or without support for a particular
assembler reader.

Error: Procedure directive arg1 has conflicts with other directives You specified a procedure dir-
ective that conflicts with other directives. for instancecdecl andpascal are mutually ex-
clusive.

Error: Calling convention doesn’t match forward This error happens when you declare a func-
tion or procedure with e.g.cdecl; but omit this directive in the implementation, or vice
versa. The calling convention is part of the function declaration, and must be repeated in the
function definition.

Error: Register calling (fastcall) not supported Theregister calling convention, i.e., arguments
are passed in registers instead of on the stack is not supported. Arguments are always passed
on the stack.

127



APPENDIX C. COMPILER MESSAGES

Error: Property can’t have a default value Set properties or indexed properties cannot have a de-
fault value.

Error: The default value of a property must be constant The value of adefault declared prop-
erty must be known at compile time. The value you specified is only known at run time. This
happens .e.g. if you specify a variable name as a default value.

Error: Symbol can’t be published, can be only a classOnly class type variables can be in apublished
section of a class if they are not declared as a property.

Error: That kind of property can’t be published Properties in apublished section cannot be
array properties. they must be moved to public sections. Properties in apublished section
must be an ordinal type, a real type, strings or sets.

Warning: Empty import name specified Both index and name for the import are 0 or empty

Warning: An import name is required Some targets need a name for the imported procedure or a
cdecl specifier

Error: Function internal name changed after use of function This is an internal error; please re-
port any occurrences of this error to the Free Pascal team.

Error: Division by zero There is a divsion by zero encounted

Error: Invalid floating point operation An operation on two real type values produced an over-
flow or a division by zero.

Error: Upper bound of range is less than lower bound The upper bound of acase label is less
than the lower bound and this is not possible

Warning: string "arg1" is longer than arg2 The size of the constant string is larger than the size
you specified in string type definition

Error: string length is larger than array of char length The size of the constant string is larger
than the size you specified in the array[x..y] of char definition

Error: Illegal expression after message directiveFree Pascal supports only integer or string val-
ues as message constants

Error: Message handlers can take only one call by ref. parameterA method declared with the
message -directive as message handler can take only one parameter which must be declared
as call by reference Parameters are declared as call by reference using thevar -directive

Error: Duplicate message label: arg1 A label for a message is used twice in one object/class

Error: Self can only be an explicit parameter in mehtods that are message handlersThe self para-
meter can only be passed explicitly to a method which is declared as message method handler.

Error: Threadvars can be only static or global Threadvars must be static or global, you can’t de-
clare a thread local to a procedure. Local variables are always local to a thread, because every
thread has it’s own stack and local variables are stored on the stack

Fatal: Direct assembler not supported for binary output format You can’t use direct assembler
when using a binary writer, choose an other outputformat or use an other assembler reader

Warning: Don’t load OBJPAS unit manual, use mode switch insteadYou’re trying to load the
ObjPas unit manual from a uses clause. This is not a good idea to do, you can better use
the{$mode objfpc} or {$mode delphi} directives which load the unit automaticly

Error: OVERRIDE can’t be used in objects Override isn’t support for objects, use VIRTUAL in-
stead to override a method of an anchestor object

128



APPENDIX C. COMPILER MESSAGES

Error: Data types which requires initialization/finalization can’t be used in variant records Some
data type (e.g.ansistring ) needs initialization/finalization code which is implicitly gener-
ated by the compiler. Such data types can’t be used in the variant part of a record.

Error: Resourcestrings can be only static or global Resourcestring can not be declared local, only
global or using the static directive.

Error: Exit with argument can’t be used here an exit statement with an argument for the return
value can’t be used here, this can happen e.g. intry..except or try..finally blocks

Error: The type of the storage symbol must be booleanIf you specify a storage symbol in a prop-
erty declaration, it must be of the type boolean

Error: This symbol isn’t allowed as storage symbol You can’t use this type of symbol as storage
specifier in property declaration. You can use only methods with the result type boolean,
boolean class fields or boolean constants

Error: Only class which are compiled in $M+ mode can be publishedIn the published section of
a class can be only class as fields used which are compiled in{$M+} or which are derived from
such a class. Normally such a class should be derived from TPersitent

Error: Procedure directive expected When declaring a procedure in a const block you used a ;
after the procedure declaration after which a procedure directive must follow. Correct declar-
ations are:

const
p : procedure;stdcall=nil;
p : procedure stdcall=nil;

Error: The value for a property index must be of an ordinal type The value you use to index a
property must be of an ordinal type, for example an integer or enumerated type.

Error: Procedure name to short to be exported The length of the procedure/function name must
be at least 2 characters long. This is because of a bug in dlltool which doesn’t parse the .def
file correct with a name of length 1.

Error: No DEFFILE entry can be generated for unit global vars

Error: Compile without -WD option You need to compile this file without the -WD switch on the
commandline

Fatal: You need ObjFpc (-S2) or Delphi (-Sd) mode to compile this moduleYou need to use{$mode
objfpc} or {$mode delphi} to compile this file. Or use the equivalent commandline
switches -S2 or -Sd.

Error: Can’t export with index under arg1 Exporting of functions or procedures with a specified
index is not support on all targets. The only platforms currently supporting export with index
are OS/2 and Win32.

Error: Exporting of variables is not supported under arg1 Exporting of variables is not support
on all targets. The only platform currently supporting export of variables is Win32.

Error: Type "arg1" can’t be used as array index type Types like DWord or Int64 aren’t allowed
as array index type

Warning: Some fields coming before "arg1" weren’t initialized In Delphi mode, not all fields of
a typed constant record have to be initialized, but the compiler warns you when it detects such
situations.

129



APPENDIX C. COMPILER MESSAGES

Error: Some fields coming before "arg1" weren’t initialized In all syntax modes but Delphi mode,
you can’t leave some fields uninitialized in the middle of a typed constant record

Hint: Some fields coming after "arg1" weren’t initialized You can leave some fields at the end
of a type constant record uninitialized (the compiler will initialize them to zero automatically),
but then the compiler gives you a hint when it detects such situations.

Error: Self must be a normal (call-by-value) parameter You can’t declare self as a const or var
parameter, it must always be a call-by-value parameter

Error: Typed constants of the type "procedure of object" can only be initialized with NIL You
can’t assign the address of a method to a typed constant which has a ’procedure of object’ type,
because such a constant requires two addresses: that of the method (which is known at compile
time) and that of the object or class instance it operates on (which can not be known at compile
time).

C.4 Type checking errors

This section lists all errors that can occur when type checking is performed.

Error: Type mismatch This can happen in many cases:

• The variable you’re assigning to is of a different type than the expression in the assign-
ment.

• You are calling a function or procedure with parameters that are incompatible with the
parameters in the function or procedure definition.

Error: Incompatible types: got "arg1" expected "arg2" There is no conversion possible between
the two types Another possiblity is that they are declared in different declarations:

Var
A1 : Array[1..10] Of Integer;
A2 : Array[1..10] Of Integer;

Begin
A1:=A2; { This statement gives also this error, it

is due the strict type checking of pascal }
End.

Error: Type mismatch between arg1 and arg2 The types are not equal

Error: Type identifier expected The identifier is not a type, or you forgot to supply a type identifier.

Error: Variable identifier expected This happens when you pass a constant to aInc var orDec
procedure. You can only pass variables as arguments to these functions.

Error: Integer expression expected, but got "arg1" The compiler expects an expression of type
integer, but gets a different type.

Error: Boolean expression expected, but got "arg1" The expression must be a boolean type, it
should be return true or false.

Error: Ordinal expression expected The expression must be of ordinal type, i.e., maximum a
Longint . This happens, for instance, when you specify a second argument toInc or Dec
that doesn’t evaluate to an ordinal value.

130



APPENDIX C. COMPILER MESSAGES

Error: pointer type expected, but got "arg1" The variable or expression isn’t of the typepointer .
This happens when you pass a variable that isn’t a pointer toNewor Dispose .

Error: class type expected, but got "arg1" The variable of expression isn’t of the typeclass .
This happens typically when

1. The parent class in a class declaration isn’t a class.

2. An exception handler (On) contains a type identifier that isn’t a class.

Error: Variable or type indentifier expected The argument to theHigh or Low function is not a
variable nor a type identifier.

Error: Can’t evaluate constant expression No longer in use.

Error: Set elements are not compatible You are trying to make an operation on two sets, when the
set element types are not the same. The base type of a set must be the same when taking the
union

Error: Operation not implemented for sets several binary operations are not defined for sets like
div mod ** (also >= <= for now)

Warning: Automatic type conversion from floating type to COMP which is an integer type An
implicit type conversion from a real type to acomp is encountered. SinceCompis a 64 bit
integer type, this may indicate an error.

Hint: use DIV instead to get an integer result When hints are on, then an integer division with the
’/’ operator will procuce this message, because the result will then be of type real

Error: string types doesn’t match, because of $V+ modeWhen compiling in{$V+} mode, the
string you pass as a parameter should be of the exact same type as the declared parameter of
the procedure.

Error: succ or pred on enums with assignments not possibleWhen you declared an enumeration
type which has assignments in it, as in C, like in the following:

Tenum = (a,b,e:=5);

you cannot use theSucc or Pred functions on them.

Error: Can’t read or write variables of this type You are trying toread or write a variable
from or to a file of type text, which doesn’t support that. Only integer types, booleans, reals,
pchars and strings can be read from/written to a text file.

Error: Can’t use readln or writeln on typed file readln andwriteln are only allowed for text
files.

Error: Can’t use read or write on untyped file. read and write are only allowed for text or
typed files.

Error: Type conflict between set elementsThere is at least one set element which is of the wrong
type, i.e. not of the set type.

Warning: lo/hi(dword/qword) returns the upper/lower word/dword Free Pascal supports an over-
loaded version oflo/hi for longint/dword/int64/qword which returns the lower-
/upper word/dword of the argument. TP always uses a 16 bitlo/hi which returns always bits
0..7 for lo and the bits 8..15 forhi . If you want the TP behavior you have to type cast the
argument toword/integer

131



APPENDIX C. COMPILER MESSAGES

Error: Integer or real expression expected The first argument tostr must a real or integer type.

Error: Wrong type arg1 in array constructor You are trying to use a type in an array constructor
which is not allowed.

Error: Incompatible type for arg no. arg1: Got arg2, expected arg3 You are trying to pass an
invalid type for the specified parameter.

Error: Method (variable) and Procedure (variable) are not compatible You can’t assign a method
to a procedure variable or a procedure to a method pointer.

Error: Illegal constant passed to internal math function The constant argument passed to a ln or
sqrt function is out of the definition range of these functions.

Error: Can’t get the address of constants It’s not possible to get the address of a constant, because
they aren’t stored in memory, you can try making it a typed constant.

Error: Argument can’t be assigned to Only expressions which can be on the left side of an as-
signment can be passed as call by reference argument Remark: Properties can be only used on
the left side of an assignment, but they can’t be used as arguments

Error: Can’t assign local procedure/function to procedure variable It’s not allowed to assign a
local procedure/function to a procedure variable, because the calling of local procedure/func-
tion is different. You can only assign local procedure/function to a void pointer.

Error: Can’t assign values to an address It’s not allowed to assign a value to an address of a vari-
able, constant, procedure or function. You can try compiling with -So if the identifier is a
procedure variable.

Error: Can’t assign values to const variable It’s not allowed to assign a value to a variable which
is declared as a const. This is normally a parameter declared as const, to allow changing make
the parameter value or var.

Error: Array type required If you are accessing a variable using an index ’[<x>]’ then the type
must be an array. In FPC mode also a pointer is allowed.

Warning: Mixing signed expressions and cardinals gives a 64bit resultIf you divide (or calcu-
late the modulus of) a signed expression by a cardinal (or vice versa), or if you have overflow
and/or range checking turned on and use an arithmetical expression (+, -, *, div, mod) in which
both signed numbers and cardinals appear, then everything has to be evaluated in 64bit which
is slower than normal 32bit arithmetics. You can avoid this by typecasting one operand so it
matches the resulttype of the other one.

Warning: Mixing signed expressions and cardinals here may cause a range check errorIf you
use a binary operator (and, or, xor) and one of the operands is a cardinal while the other one
is a signed expression, then, if range checking is turned on, you may get a range check error
because in such a case both operands are converted to cardinal before the operation is carried
out. You can avoid this by typecasting one operand so it matches the resulttype of the other
one.

Error: Typecast has different size (arg1 -> arg2) in assignmentType casting to a type with a dif-
ferent size is not allowed when the variable is used for assigning.

C.5 Symbol handling

This section lists all the messages that concern the handling of symbols. This means all things that
have to do with procedure and variable names.

132



APPENDIX C. COMPILER MESSAGES

Error: Identifier not found arg1 The compiler doesn’t know this symbol. Usually happens when
you misspel the name of a variable or procedure, or when you forgot to declare a variable.

Fatal: Internal Error in SymTableStack() An internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description of
the circumstances in which the error occurs.

Error: Duplicate identifier arg1 The identifier was already declared in the current scope.

Hint: Identifier already defined in arg1 at line arg2 The identifier was already declared in a pre-
vious scope.

Error: Unknown identifier arg1 The identifier encountered hasn’t been declared, or is used out-
side the scope where it’s defined.

Error: Forward declaration not solved arg1 This can happen in two cases:

• This happens when you declare a function (in theinterface part, or with aforward
directive, but do not implement it.

• You reference a type which isn’t declared in the currenttype block.

Fatal: Identifier type already defined as type You are trying to redefine a type.

Error: Error in type definition There is an error in your definition of a new array type:

One of the range delimiters in an array declaration is erroneous. For example,Array [1..1.25]
will trigger this error.

Error: Type identifier not defined The type identifier has not been defined yet.

Error: Forward type not resolved arg1 A symbol was forward defined, but no declaration was
encountered.

Error: Only static variables can be used in static methods or outside methodsA static method
of an object can only access static variables.

Error: Invalid call to tvarsym.mangledname() An internal error occurred in the compiler; If you
encounter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: record or class type expectedThe variable or expression isn’t of the typerecord orclass .

Error: Instances of classes or objects with an abstract method are not allowedYou are trying to
generate an instance of a class which has an abstract method that wasn’t overridden.

Warning: Label not defined arg1 A label was declared, but not defined.

Error: Label used but not defined arg1 A label was declared and used, but not defined.

Error: Illegal label declaration This error should never happen; it occurs if a label is defined out-
side a procedure or function.

Error: GOTO and LABEL are not supported (use switch -Sg) You must compile a program which
haslabel s andgoto statements with the-Sg switch. By default,label andgoto aren’t
supported.

Error: Label not found A goto label was encountered, but the label isn’t declared.

Error: identifier isn’t a label The identifier specified after thegoto isn’t of type label.

Error: label already defined You are defining a label twice. You can define a label only once.

133



APPENDIX C. COMPILER MESSAGES

Error: illegal type declaration of set elements The declaration of a set contains an invalid type
definition.

Error: Forward class definition not resolved arg1 You declared a class, but you didn’t implement
it.

Hint: Unit arg1 not used in arg2 The unit referenced in theuses clause is not used.

Hint: Parameter arg1 not used This is a warning. The identifier was declared (locally or globally)
but wasn’t used (locally or globally).

Note: Local variable arg1 not used You have declared, but not used a variable in a procedure or
function implementation.

Hint: Value parameter arg1 is assigned but never usedThis is a warning. The identifier was de-
clared (locally or globally) set but not used (locally or globally).

Note: Local variable arg1 is assigned but never usedThe variable in a procedure or function im-
plementation is declared, set but never used.

Hint: Local arg1 arg2 is not used A local symbol is never used.

Note: Private field arg1.arg2 is never used

Note: Private field arg1.arg2 is assigned but never used

Note: Private method arg1.arg2 never used

Error: Set type expected The variable or expression isn’t of typeset . This happens in anin
statement.

Warning: Function result does not seem to be setYou can get this warning if the compiler thinks
that a function return value is not set. This will not be displayed for assembler procedures, or
procedures that contain assembler blocks.

Warning: Type arg1 is not aligned correctly in current record for C Arrays with sizes not mul-
tiples of 4 will be wrongly aligned for C structures.

Error: Unknown record field identifier arg1 The field doesn’t exist in the record definition.

Warning: Local variable arg1 does not seem to be initialized

Warning: Variable arg1 does not seem to be initializedThese messages are displayed if the com-
piler thinks that a variable will be used (i.e. appears in the right-hand-side of an expression)
when it wasn’t initialized first (i.e. appeared in the left-hand side of an assigment)

Error: identifier idents no member arg1 When using the extended syntax ofnew, you must spe-
cify the constructor method of the class you are trying to create. The procedure you specified
does not exist.

Found declaration: arg1 You get this when you use the-vb switch. In case an overloaded pro-
cedure is not found, then all candidate overloaded procedures are listed, with their parameter
lists.

Error: Data segment too large (max. 2GB) You get this when you declare an array whose size
exceeds the 2GB limit.

134



APPENDIX C. COMPILER MESSAGES

C.6 Code generator messages

This section lists all messages that can be displayed if the code generator encounters an error condi-
tion.

Error: BREAK not allowed You’re trying to usebreak outside a loop construction.

Error: CONTINUE not allowed You’re trying to usecontinue outside a loop construction.

Error: Expression too complicated - FPU stack overflow Your expression is too long for the com-
piler. You should try dividing the construct over multiple assignments.

Error: Illegal expression This can occur under many circumstances. Mostly when trying to evalu-
ate constant expressions.

Error: Invalid integer expression You made an expression which isn’t an integer, and the compiler
expects the result to be an integer.

Error: Illegal qualifier One of the following is happening :

• You’re trying to access a field of a variable that is not a record.

• You’re indexing a variable that is not an array.

• You’re dereferencing a variable that is not a pointer.

Error: High range limit < low range limit You are declaring a subrange, and the lower limit is
higher than the high limit of the range.

Error: Illegal counter variable The type of afor loop variable must be an ordinal type. Loop
variables cannot be reals or strings.

Error: Can’t determine which overloaded function to call You’re calling overloaded functions with
a parameter that doesn’t correspond to any of the declared function parameter lists. e.g. when
you have declared a function with parametersword andlongint , and then you call it with
a parameter which is of typeinteger .

Error: Parameter list size exceeds 65535 bytesThe I386 processor limits the parameter list to 65535
bytes (theRETinstruction causes this)

Error: Illegal type conversion When doing a type-cast, you must take care that the sizes of the
variable and the destination type are the same.

Conversion between ordinals and pointers is not portable across platformsIf you typecast a pointer
to a longint, this code will not compile on a machine using 64bit for pointer storage.

Error: File types must be var parameters You cannot specify files as value parameters, i.e. they
must always be declaredvar parameters.

Error: The use of a far pointer isn’t allowed there Free Pascal doesn’t support far pointers, so
you cannot take the address of an expression which has a far reference as a result. Themem
construct has a far reference as a result, so the following code will produce this error:

var p : pointer;
...
p:=@mem[a000:000];

Error: illegal call by reference parameters You are trying to pass a constant or an expression to a
procedure that requires avar parameter. Only variables can be passed as avar parameter.

135



APPENDIX C. COMPILER MESSAGES

Error: EXPORT declared functions can’t be called No longer in use.

Warning: Possible illegal call of constructor or destructor (doesn’t match to this context)No longer
in use.

Note: Inefficient code You construction seems dubious to the compiler.

Warning: unreachable code You specified a loop which will never be executed. Example:

while false do
begin
{.. code ...}
end;

Error: procedure call with stackframe ESP/SP The compiler encountered a procedure or func-
tion call inside a procedure that uses aESP/SP stackframe. Normally, when a call is done the
procedure needs aEBPstackframe.

Error: Abstract methods can’t be called directly You cannot call an abstract method directy, in-
stead you must call a overriding child method, because an abstract method isn’t implemented.

Fatal: Internal Error in getfloatreg(), allocation failure An internal error occurred in the com-
piler; If you encounter such an error, please contact the developers and try to provide an exact
description of the circumstances in which the error occurs.

Fatal: Unknown float type The compiler cannot determine the kind of float that occurs in an ex-
pression.

Fatal: SecondVecn() base defined twiceAn internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: Extended cg68k not supportedThe extended type is not supported on the m68k plat-
form.

Fatal: 32-bit unsigned not supported in MC68000 modeThe cardinal is not supported on the m68k
platform.

Fatal: Internal Error in secondinline() An internal error occurred in the compiler; If you encounter
such an error, please contact the developers and try to provide an exact description of the cir-
cumstances in which the error occurs.

Register arg1 weight arg2 arg3Debugging message. Shown when the compiler considers a vari-
able for keeping in the registers.

Error: Stack limit excedeed in local routine Your code requires a too big stack. Some operating
systems pose limits on the stack size. You should use less variables or try ro put large variables
on the heap.

Stack frame is omitted Some procedure/functions do not need a complete stack-frame, so it is
omitted. This message will be displayed when the -vd switch is used.

Error: Object or class methods can’t be inline. You cannot have inlined object methods.

Error: Procvar calls can’t be inline. A procedure with a procedural variable call cannot be inlined.

Error: No code for inline procedure stored The compiler couldn’t store code for the inline pro-
cedure.

136



APPENDIX C. COMPILER MESSAGES

Error: Direct call of interrupt procedure arg1 is not possible You can not call an interrupt pro-
cedure directly from FPC code

Error: Element zero of an ansi/wide- or longstring can’t be accessed, use (set)length insteadYou
should usesetlength to set the length of an ansi/wide/longstring andlength to get the
length of such kinf of string

Error: Include and exclude not implemented in this case include andexclude are only par-
tially implemented fori386 processors and not at all form68k processors.

Error: Constructors or destructors can not be called inside a ’with’ clause Inside aWith clause
you cannot call a constructor or destructor for the object you have in thewith clause.

Error: Cannot call message handler method directly A message method handler method can’t be
called directly if it contains an explicit self argument

Error: Jump in or outside of an exception block It isn’t allowed to jump in or outside of an ex-
ception block liketry..finally..end; :

label 1;

...

try
if not(final) then

goto 1; // this line will cause an error
finally

...
end;
1:
...

Error: Control flow statements aren’t allowed in a finally block It isn’t allowed to use the con-
trol flow statementsbreak , continue andexit inside a finally statement. The following
example shows the problem:

...
try

p;
finally

...
exit; // This exit ISN’T allowed

end;
...

If the procedurep raises an exception the finally block is executed. If the execution reaches the
exit, it’s unclear what to do: exiting the procedure or searching for another exception handler

C.7 Errors of assembling/linking stage

This section lists errors that occur when the compiler is processing the command line or handling the
configuration files.

137



APPENDIX C. COMPILER MESSAGES

Warning: Source operating system redefined

Info: Assembling (pipe) arg1

Error: Can’t create assember file: arg1 The mentioned file can’t be create. Check if you’ve per-
mission to create this file

Error: Can’t create object file: arg1 The mentioned file can’t be create. Check if you’ve permis-
sion to create this file

Error: Can’t create archive file: arg1 The mentioned file can’t be create. Check if you’ve permis-
sion to create this file

Error: Assembler arg1 not found, switching to external assembling

Using assembler: arg1

Error: Error while assembling exitcode arg1

Error: Can’t call the assembler, error arg1 switching to external assembling

Info: Assembling arg1

Info: Assembling smartlink arg1

Warning: Object arg1 not found, Linking may fail !

Warning: Library arg1 not found, Linking may fail !

Error: Error while linking

Error: Can’t call the linker, switching to external linking

Info: Linking arg1

Error: Util arg1 not found, switching to external linking

Using util arg1

Error: Creation of Executables not supported

Error: Creation of Dynamic/Shared Libraries not supported

Info: Closing script arg1

Error: resource compiler not found, switching to external mode

Info: Compiling resource arg1

unit arg1 can’t be static linked, switching to smart linking

unit arg1 can’t be smart linked, switching to static linking

unit arg1 can’t be shared linked, switching to static linking

Error: unit arg1 can’t be smart or static linked

Error: unit arg1 can’t be shared or static linked

138



APPENDIX C. COMPILER MESSAGES

C.8 Unit loading messages.

This section lists all messages that can occur when the compiler is loading a unit from disk into
memory. Many of these mesages are informational messages.

Unitsearch: arg1 When you use the-vt , the compiler tells you where it tries to find unit files.

PPU Loading arg1 When the-vt switch is used, the compiler tells you what units it loads.

PPU Name: arg1 When you use the-vu flag, the unit name is shown.

PPU Flags: arg1 When you use the-vu flag, the unit flags are shown.

PPU Crc: arg1 When you use the-vu flag, the unit CRC check is shown.

PPU Time: arg1 When you use the-vu flag, the time the unit was compiled is shown.

PPU File too short The ppufile is too short, not all declarations are present.

PPU Invalid Header (no PPU at the begin)A unit file contains as the first three bytes the ascii
codes ofPPU

PPU Invalid Version arg1 This unit file was compiled with a different version of the compiler, and
cannot be read.

PPU is compiled for an other processorThis unit file was compiled for a different processor type,
and cannot be read

PPU is compiled for an other target This unit file was compiled for a different target, and cannot
be read

PPU Source: arg1 When you use the-vu flag, the unit CRC check is shown.

Writing arg1 When you specify the-vu switch, the compiler will tell you where it writes the unit
file.

Fatal: Can’t Write PPU-File An error occurred when writing the unit file.

Fatal: Error reading PPU-File This means that the unit file was corrupted, and contains invalid
information. Recompilation will be necessary.

Fatal: unexpected end of PPU-FileUnexpected end of file.

Fatal: Invalid PPU-File entry: arg1 The unit the compiler is trying to read is corrupted, or gener-
ated with a newer version of the compiler.

Fatal: PPU Dbx count problem There is an inconsistency in the debugging information of the unit.

Error: Illegal unit name: arg1 The name of the unit doesn’t match the file name.

Fatal: Too much units Free Pascal has a limit of 1024 units in a program. You can change this
behavior by changing themaxunits constant in thefiles.pas file of the compiler, and re-
compiling the compiler.

Fatal: Circular unit reference between arg1 and arg2 Two units are using each other in the inter-
face part. This is only allowed in theimplementation part. At least one unit must contain
the other one in theimplementation section.

Fatal: Can’t compile unit arg1, no sources availableA unit was found that needs to be recom-
piled, but no sources are available.

139



APPENDIX C. COMPILER MESSAGES

Warning: Can’t recompile unit arg1, but found modifed include files A unit was found to have
modified include files, but some source files were not found, so recompilation is impossible.

Fatal: Can’t find unit arg1 You tried to use a unit of which the PPU file isn’t found by the compiler.
Check your config files for the unit pathes

Warning: Unit arg1 was not found but arg2 exists

Fatal: Unit arg1 searched but arg2 found Dos truncation of 8 letters for unit PPU files may lead
to problems when unit name is longer than 8 letters.

Warning: Compiling the system unit requires the -Us switch When recompiling the system unit
(it needs special treatment), the-Us must be specified.

Fatal: There were arg1 errors compiling module, stoppingWhen the compiler encounters a fatal
error or too many errors in a module then it stops with this message.

Load from arg1 (arg2) unit arg3 When you use the-vu flag, which unit is loaded from which unit
is shown.

Recompiling arg1, checksum changed for arg2

Recompiling arg1, source found onlyWhen you use the-vu flag, these messages tell you why the
current unit is recompiled.

Recompiling unit, static lib is older than ppufile When you use the-vu flag, the compiler warns
if the static library of the unit are older than the unit file itself.

Recompiling unit, shared lib is older than ppufile When you use the-vu flag, the compiler warns
if the shared library of the unit are older than the unit file itself.

Recompiling unit, obj and asm are older than ppufile When you use the-vu flag, the compiler
warns if the assembler or object file of the unit are older than the unit file itself.

Recompiling unit, obj is older than asm When you use the-vu flag, the compiler warns if the
assembler file of the unit is older than the object file of the unit.

Parsing interface of arg1 When you use the-vu flag, the compiler warns that it starts parsing the
interface part of the unit

Parsing implementation of arg1 When you use the-vu flag, the compiler warns that it starts pars-
ing the implementation part of the unit

Second load for unit arg1 When you use the-vu flag, the compiler warns that it starts recompiling
a unit for the second time. This can happend with interdepend units.

PPU Check file arg1 time arg2 When you use the-vu flag, the compiler show the filename and
date and time of the file which a recompile depends on

Hint: Conditional arg1 was not set at startup in last compilation of arg2 when recompilation of
an unit is required the compiler will check that the same conditionals are set for the recompili-
ation. The compiler has found a conditional that currently is defined, but was not used the last
time the unit was compiled.

Hint: Conditional arg1 was set at startup in last compilation of arg2 when recompilation of an
unit is required the compiler will check that the same conditionals are set for the recompili-
ation. The compiler has found a conditional that was used the last time the unit was compiled,
but the conditional is currently not defined.

Hint: File arg1 is newer than Release PPU file arg2

140



APPENDIX C. COMPILER MESSAGES

C.9 Command-line handling errors

This section lists errors that occur when the compiler is processing the command line or handling the
configuration files.

Warning: Only one source file supported You can specify only one source file on the command
line. The first one will be compiled, others will be ignored. This may indicate that you forgot
a ’-’ sign.

Warning: DEF file can be created only for OS/2 This option can only be specified when you’re
compiling for OS/2

Error: nested response files are not supportedyou cannot nest response files with the@file
command-line option.

Fatal: No source file name in command lineThe compiler expects a source file name on the com-
mand line.

Note: No option inside arg1 config fileThe compiler didn’t find any option in that config file.

Error: Illegal parameter: arg1 You specified an unknown option.

Hint: -? writes help pages When an unknown option is given, this message is diplayed.

Fatal: Too many config files nestedYou can only nest up to 16 config files.

Fatal: Unable to open file arg1 The option file cannot be found.

Reading further options from arg1 Displayed when you have notes turned on, and the compiler
switches to another options file.

Warning: Target is already set to: arg1 Displayed if more than one-T option is specified.

Warning: Shared libs not supported on DOS platform, reverting to static If you specify-CD for
theDOS platform, this message is displayed. The compiler supports only static libraries under
DOS

Fatal: too many IF(N)DEFs the#IF(N)DEF statements in the options file are not balanced with
the#ENDIF statements.

Fatal: too many ENDIFs the#IF(N)DEF statements in the options file are not balanced with the
#ENDIF statements.

Fatal: open conditional at the end of the file the #IF(N)DEF statements in the options file are
not balanced with the#ENDIF statements.

Warning: Debug information generation is not supported by this executableIt is possible to have
a compiler executable that doesn’t support the generation of debugging info. If you use such
an executable with the-g switch, this warning will be displayed.

Hint: Try recompiling with -dGDB It is possible to have a compiler executable that doesn’t sup-
port the generation of debugging info. If you use such an executable with the-g switch, this
warning will be displayed.

Error: You are using the obsolete switch arg1 this warns you when you use a switch that is not
needed/supported anymore. It is recommended that you remove the switch to overcome prob-
lems in the future, when the switch meaning may change.

141



APPENDIX C. COMPILER MESSAGES

Error: You are using the obsolete switch arg1, please use arg2this warns you when you use a
switch that is not supported anymore. You must now use the second switch instead. It is
recommended that you change the switch to overcome problems in the future, when the switch
meaning may change.

Note: Switching assembler to default source writing assemblerthis notifies you that the assem-
bler has been changed because you used the -a switch which can’t be used with a binary
assembler writer.

Warning: Assembler output selected "arg1" is not compatible with "arg2"

Warning: "arg1" assembler use forced The assembler output selected can not generate object files
with the correct format. Therefore, the default assembler for this target is used instead.

*** press enter ***

C.10 Assembler reader errors.

This section lists the errors that are generated by the inline assembler reader. They arenot the
messages of the assembler itself.

General assembler errors
Divide by zero in asm evaluator This fatal error is reported when a constant assembler expressions

does a division by zero.

Evaluator stack overflow, Evaluator stack underflow These fatal errors are reported when a con-
stant assembler expression is too big to evaluate by the constant parser. Try reducing the
number of terms.

Invalid numeric format in asm evaluator This fatal error is reported when a non-numeric value is
detected by the constant parser. Normally this error should never occur.

Invalid Operator in asm evaluator This fatal error is reported when a mathematical operator is
detected by the constant parser. Normally this error should never occur.

Unknown error in asm evaluator This fatal error is reported when an internal error is detected by
the constant parser. Normally this error should never occur.

Invalid numeric value This warning is emitted when a conversion from octal,binary or hexadecimal
to decimal is outside of the supported range.

Escape sequence ignoredThis error is emitted when a non ANSI C escape sequence is detected in
a C string.

Asm syntax error - Prefix not found This occurs when trying to use a non-valid prefix instruction

Asm syntax error - Trying to add more than one prefix This occurs when you try to add more
than one prefix instruction

Asm syntax error - Opcode not found You have tried to use an unsupported or unknown opcode

Constant value out of boundsThis error is reported when the constant parser determines that the
value you are using is out of bounds, either with the opcode or with the constant declaration
used.

142



APPENDIX C. COMPILER MESSAGES

Non-label pattern contains @ This only applied to the m68k and Intel styled assembler, this is
reported when you try to use a non-label identifier with a ’@’ prefix.

Internal error in Findtype()

Internal Error in ConcatOpcode()

Internal Errror converting binary

Internal Errror converting hexadecimal

Internal Errror converting octal

Internal Error in BuildScaling()

Internal Error in BuildConstant()

internal error in BuildReference()

internal error in HandleExtend()

Internal error in ConcatLabeledInstr() These errors should never occur, if they do then you have
found a new bug in the assembler parsers. Please contact one of the developers.

Opcode not in table, operands not checkedThis warning only occurs when compiling the system
unit, or related files. No checking is performed on the operands of the opcodes.

@CODE and @DATA not supported This Turbo Pascal construct is not supported.

SEG and OFFSET not supported This Turbo Pascal construct is not supported.

Modulo not supported Modulo constant operation is not supported.

Floating point binary representation ignored

Floating point hexadecimal representation ignored

Floating point octal representation ignored These warnings occur when a floating point constant
are declared in a base other then decimal. No conversion can be done on these formats. You
should use a decimal representation instead.

Identifier supposed external This warning occurs when a symbol is not found in the symolb table,
it is therefore considered external.

Functions with void return value can’t return any value in asm code Only routines with a return
value can have a return value set.

Error in binary constant

Error in octal constant

Error in hexadecimal constant

Error in integer constant These errors are reported when you tried using an invalid constant ex-
pression, or that the value is out of range.

Invalid labeled opcode

Asm syntax error - error in reference

Invalid Opcode

Invalid combination of opcode and operands

143



APPENDIX C. COMPILER MESSAGES

Invalid size in reference

Invalid middle sized operand

Invalid three operand opcode

Assembler syntax error

Invalid operand type You tried using an invalid combination of opcode and operands, check the
syntax and if you are sure it is correct, please contact one of the developers.

Unknown identifier The identifier you are trying to access does not exist, or is not within the current
scope.

Trying to define an index register more than once

Trying to define a segment register twice

Trying to define a base register twiceYou are trying to define an index/segment register more then
once.

Invalid field specifier The record or object field you are trying to access does not exist, or is incor-
rect.

Invalid scaling factor

Invalid scaling value

Scaling value only allowed with index Allowed scaling values are 1,2,4 or 8.

Cannot use SELF outside a methodYou are trying to access the SELF identifier for objects out-
side a method.

Invalid combination of prefix and opcode This opcode cannot be prefixed by this instruction

Invalid combination of override and opcode This opcode cannot be overriden by this combination

Too many operands on lineAt most three operand instructions exist on the m68k, and i386, you
are probably trying to use an invalid syntax for this opcode.

Duplicate local symbol You are trying to redefine a local symbol, such as a local label.

Unknown label identifer

Undefined local symbol

local symbol not found inside asm statementThis label does not seem to have been defined in the
current scope

Assemble node syntax error

Not a directive or local symbol The assembler statement is invalid, or you are not using a recog-
nized directive.

144



APPENDIX C. COMPILER MESSAGES

I386 specific errors
repeat prefix and a segment override on<= i386 ... A problem with interrupts and a prefix instruc-

tion may occur and may cause false results on 386 and earlier computers.

Fwait can cause emulation problems with emu387This warning is reported when using the FWAIT
instruction, it can cause emulation problems on systems which use the em387.dxe emulator.

You need GNU as version >= 2.81 to compile this MMX codeMMX assembler code can only be
compiled using GAS v2.8.1 or later.

NEAR ignored

FAR ignored NEARandFARare ignored in the intel assemblers, but are still accepted for compat-
iblity with the 16-bit code model.

Invalid size for MOVSX/MOVZX

16-bit base in 32-bit segment

16-bit index in 32-bit segment 16-bit addressing is not supported, you must use 32-bit addressing.

Constant reference not allowedIt is not allowed to try to address a constant memory address in
protected mode.

Segment overrides not supportedIntel style (eg: rep ds stosb) segment overrides are not support
by the assembler parser.

Expressions of the form [sreg:reg...are currently not supported] To access a memory operand in a
different segment, you should use the sreg:[reg...] snytax instead of [sreg:reg...]

Size suffix and destination register do not matchIn intel AT&T syntax, you are using a register
size which does not concord with the operand size specified.

Invalid assembler syntax. No ref with brackets

Trying to use a negative index register

Local symbols not allowed as references

Invalid operand in bracket expression

Invalid symbol name:

Invalid Reference syntax

Invalid string as opcode operand:

Null label references are not allowed

Using a defined name as a local label

Invalid constant symbol

Invalid constant expression

/ at beginning of line not allowed

NOR not supported

Invalid floating point register name

Invalid floating point constant:

145



APPENDIX C. COMPILER MESSAGES

Asm syntax error - Should start with bracket

Asm syntax error - register:

Asm syntax error - in opcode operand

Invalid String expression

Constant expression out of bounds

Invalid or missing opcode

Invalid real constant expression

Parenthesis are not allowed

Invalid Reference

Cannot use __SELF outside a method

Cannot use __OLDEBP outside a nested procedure

Invalid segment override expression

Strings not allowed as constants

Switching sections is not allowed in an assembler block

Invalid global definition

Line separator expected

Invalid local common definition

Invalid global common definition

assembler code not returned to text

invalid opcode size

Invalid character: <

Invalid character: >

Unsupported opcode

Invalid suffix for intel assembler

Extended not supported in this mode

Comp not supported in this mode

Invalid Operand:

Override operator not supported

m68k specific errors.
Increment and Decrement mode not allowed togetherYou are trying to use dec/inc mode together.

Invalid Register list in movem/fmovem The register list is invalid, normally a range of registers
should be separated by - and individual registers should be separated by a slash.

Invalid Register list for opcode

68020+ mode required to assemble

146



Appendix D

Run time errors

Applications generated by Free Pascal might generate Run time error when certain abnormal con-
ditions are detected in the application. This appendix lists the possible run time errors and gives
information on why they might be produced.

1 Invalid function number An invalid operating system call was attempted.

2 File not found Reported when trying to erase, rename or open a non-existent file.

3 Path not found Reported by the directory handling routines when a path does not exist or is in-
valid. Also reported when trying to access a non-existent file.

4 Too many open filesThe maximum number of currently opened files by your process has been
reached. Certain operating systems limit the number of files which can be opened concurrently,
and this error can occur when this limit has been reached.

5 File access deniedPermission accessing the file is denied. This error might be caused by several
reasons:

• Trying to open for writing a file which is read only, or which is actually a directory.

• File is currently locked or used by another process.

• Trying to create a new file, or directory while a file or directory of the same name already
exists.

• Trying to read from a file which was opened in write only mode.

• Trying to write from a file which was opened in read only mode.

• Trying to remove a directory or file while it is not possible.

• No permission to access the file or directory.

6 Invalid file handle If this happens, the file variable you are using is trashed; it indicates that your
memory is corrupted.

12 Invalid file access codeReported when a reset or rewrite is called with an invalidFileMode
value.

15 Invalid drive number The number given to theGetdir or ChDir function specifies a non-
existent disk.

16 Cannot remove current directory Reported when trying to remove the currently active direct-
ory.

147



APPENDIX D. RUN TIME ERRORS

17 Cannot rename across drivesYou cannot rename a file such that it would end up on another
disk or partition.

100 Disk read error An error occurred when reading from disk. Typically when you try to read past
the end of a file.

101 Disk write error Reported when the disk is full, and you’re trying to write to it.

102 File not assignedThis is reported byReset , Rewrite , Append , Rename andErase , if
you call them with an unassigned file as a parameter.

103 File not open Reported by the following functions :Close, Read, Write, Seek, EOf,
FilePos, FileSize, Flush, BlockRead, andBlockWrite if the file is not open.

104 File not open for input Reported byRead, BlockRead, Eof, Eoln, SeekEof orSeekEoln
if the file is not opened withReset .

105 File not open for output Reported by write if a text file isn’t opened withRewrite .

106 Invalid numeric format Reported when a non-numeric value is read from a text file, when a
numeric value was expected.

150 Disk is write-protected (Critical error)

151 Bad drive request struct length (Critical error)

152 Drive not ready (Critical error)

154 CRC error in data (Critical error)

156 Disk seek error (Critical error)

157 Unknown media type (Critical error)

158 Sector Not Found (Critical error)

159 Printer out of paper (Critical error)

160 Device write fault (Critical error)

161 Device read fault (Critical error)

162 Hardware failure (Critical error)

200 Division by zero The application attempted to divide a number by zero.

201 Range check error If you compiled your program with range checking on, then you can get
this error in the following cases:

1. An array was accessed with an index outside its declared range.

2. Trying to assign a value to a variable outside its range (for instance an enumerated type).

202 Stack overflow error The stack has grown beyond its maximum size (in which case the size of
local variables should be reduced to avoid this error), or the stack has become corrupt. This
error is only reported when stack checking is enabled.

203 Heap overflow error The heap has grown beyond its boundaries. This is caused when trying
to allocate memory exlicitly withNew, GetMemor ReallocMem , or when a class or object
instance is created and no memory is left. Please note that, by default, Free Pascal provides a
growing heap, i.e. the heap will try to allocate more memory if needed. However, if the heap
has reached the maximum size allowed by the operating system or hardware, then you will get
this error.

148



APPENDIX D. RUN TIME ERRORS

204 Invalid pointer operation This you will get if you callDispose or Freemem with an invalid
pointer (notably,Nil )

205 Floating point overflow You are trying to use or produce too large real numbers.

206 Floating point underflow You are trying to use or produce too small real numbers.

207 Invalid floating point operation Can occur if you try to calculate the square root or logarithm
of a negative number.

210 Object not initialized When compiled with range checking on, a program will report this error
if you call a virtual method without having called istr constructor.

211 Call to abstract method Your program tried to execute an abstract virtual method. Abstract
methods should be overridden, and the overriding method should be called.

212 Stream registration error This occurs when an invalid type is registered in the objects unit.

213 Collection index out of rangeYou are trying to access a collection item with an invalid index
(objects unit).

214 Collection overflow error The collection has reached its maximal size, and you are trying to
add another element (objects unit).

215 Arithmetic overflow error This error is reported when the result of an arithmetic operation is
outside of its supported range. Contrary to Turbo Pascal, this error is only reported for 32-bit
or 64-bit arithmetic overflows. This is due to the fact that everything is converted to 32-bit or
64-bit before doing the actual arithmetic operation.

216 General Protection fault The application tried to access invalid memory space. This can be
caused by several problems:

1. Deferencing anil pointer

2. Trying to access memory which is out of bounds (for example, callingmove with an
invalid length).

217 Unhandled exception occurredAn exception occurred, and there was no exception handler
present. Thesysutils unit installs a default exception handler which catches all excpetions
and exits gracefully.

219 Invalid typecast Thrown when an invalid typecast is attempted on a class using theas operator.
This error is also thrown when an object or class is typecast to an invalid class or object and
a virtual method of that class or object is called. This last error is only detected if the-CR
compiler option is used.

227 Assertion failed error An assertion failed, and noAssertErrorProc procedural variable
was installed.

149



Appendix E

The Floating Point Coprocessor
emulator

In this appendix we note some caveats when using the floating point emulator on GO32V2 systems.
Under GO32V1 systems, all is as described in the installation section.

Q: I don’t have an 80387. How do I compile and run floating point programs under GO32V2?

Q: What shall I install on a target machine which lacks hardware floating-point support?

A : Programs which use floating point computations and could be run on machines without an 80387
should be allowed to dynamically load theemu387.dxe file at run-time if needed. To do this you
must link theemu387 unit to your exectuable program, for example:

Program MyFloat;

Uses emu387;

var
r: real;

Begin
r:=1.0;
WriteLn(r);

end.

Emu387 takes care of loading the dynamic emulation point library.

You should always add emulation when you distribute floating-point programs.

A few users reported that the emulation won’t work for them unless they explicitly tellDJGPPthere
is nox87 hardware, like this:

set 387=N
set emu387=c:/djgpp/bin/emu387.dxe

There is an alternative FP emulator called WMEMU. It mimics a real coprocessor more closely.

WARNING:We strongly suggest that you use WMEMU as FPU emulator, sinceemu387.dxe does
not emulate all the instructions which are used by the Run-Time Libary such asFWAIT.

Q: I have an 80387 emulator installed in my AUTOEXEC.BAT, but DJGPP-compiled floating point
programs still doesn’t work. Why?

150



APPENDIX E. THE FLOATING POINT COPROCESSOR EMULATOR

A : DJGPP switches the CPU to protected mode, and the information needed to emulate the 80387
is different. Not to mention that the exceptions never get to the real-mode handler. You must use
emulators which are designed for DJGPP. Apart of emu387 and WMEMU, the only other emulator
known to work with DJGPP is Q87 from QuickWare. Q87 is shareware and is available from the
QuickWare Web site.

Q: I run DJGPP in anOS/2 DOS box, and I’m told thatOS/2 will install its own emulator library if
the CPU has no FPU, and will transparently execute FPU instructions. So why won’t DJGPP run
floating-point code underOS/2 on my machine?

A : OS/2 installs an emulator for nativeOS/2 images, but does not provide FPU emulation for DOS
sessions.

151



Appendix F

A samplegdb.ini file

Here you have a samplegdb.ini file listing, which gives better results when usinggdb . UnderLINUX

you should put this in a.gdbinit file in your home directory or the current directory..

set print demangle off
set gnutarget auto
set verbose on
set complaints 1000
dir ./rtl/dosv2
set language c++
set print vtbl on
set print object on
set print sym on
set print pretty on
disp /i $eip

define pst
set $pos=&$arg0
set $strlen = {byte}$pos
print {char}&$arg0.st@($strlen+1)
end

document pst
Print out a pascal string

end

152



Appendix G

Options and settings

In table (G.1) a summary of available boolean compiler directives and the corresponding command-
line options are listed. Other directives and the corresponding options are shown in table (G.2). For
more information about the command-line options, chapter5, page23. For more information about
the directives, see theProgrammers guide.

Table G.1: Boolean Options and directves

Short long Opt Explanation
$A[+/-] $ALIGN[ON/OFF] Data alignment
$B[+/-] $BOOLEVAL[ON/OFF] Boolean evaluation mode
$C[+/-] $ASSERTIONS[ON/OFF] -Sa Include assertions
$D[+/-] $DEBUGINFO[ON/OFF] -g Include debug info
$E[+/-] Coprocessor emulation
$F[+/-] Far or near function (ignored)
$G[+/-] generate 80286 code (ignored)

$GOTO[ON/OFF] -Sg SupportGOTOandLabel
$HINTS[ON/OFF] -vh Show hints

$H[+/-] $LONGSTRINGS[ON/OFF] -Sh Use ansistrings
$I[+/-] $IOCHECKS[ON/OFF] -Ci Check I/O operation result

$INLINE[ON/OFF] -Si Allow inline code
$L[+/-] $LOCALSYMBOLS[ON/OFF] Local symbol information
$M[+/-] $TYPEINFO[ON/OFF] Generate RTTI for classes

$MMX[ON/OFF] Intel MMX support
$N[+/-] Floating point sypport

$NOTES[ON/OFF] -vn Emit notes
$O[+/-] Support overlays (ignored)
$P[+/-] $OPENSTRINGS[ON/OFF] Support open strings
$Q[+/-] $OVERFLOWCHECKS[ON/OFF] -Co Overflow checking
$R[+/-] $RANGECHEKS[ON/OFF] -Cr Range checks
$S[+/-] -Ct Stack checks

$SMARTLINK[ON/OFF] -CX Use smartlinking
$STATIC[ON/OFF] -St Allow use ofstatic

$T[+/-] $TYPEDADDRESS[ON/OFF] Types addresses

153

file:../prog/prog.html


APPENDIX G. OPTIONS AND SETTINGS

Table G.2: Options and directives

Short long Opt Explanation
$APPTYPE -W Application type (Win32/OS2)
$ASMMODE -R Assembler reader modus
$DEFINE -d Define symbol
$DESCRIPTION Set program description
$ELSE Conditional compilation switch
$ENDIF Conditional compilation end
$FATAL report fatal error
$HINT Emit hint message

$I file $INCLUDE Include file or literal text
$IF Conditional compilation start
$IFDEF NAME Conditional compilation start
$IFNDEF Conditional compilation start
$IFOPT Conditional compilation start
$INCLUDEPATH -Fi set include path
$INFO Emit information message

$L file $LINK Link object file
$LIBRARYPATH -Fl Set library path
$LINKLIB name link library

$M MIN,MAX $MEMORY Set memory sizes
$MACRO -Sm Allow use of macros
$MESSAGE Emit message
$MODE Set compatibility mode
$NOTE Emite note message
$OBJECTPATH -Fo Set object path
$OUTPUT -A Set output format
$PACKENUM Enumeration type size
$PACKRECORDS Record element alignment
$SATURATION Saturation (ignored)
$STOP Stop compilation
$UNDEF -u Undefine symbol

154


	Introduction
	About this document
	About the compiler
	Getting more information.

	Installing the compiler
	Before Installation : Requirements
	System requirements
	Software requirements
	Under DOS
	Under UNIX
	Under Windows
	Under OS/2


	Installing the compiler.
	Installing under DOS or Windows
	Mandatory installation steps.
	Optional Installation: The coprocessor emulation

	Installing under Linux
	Mandatory installation steps.


	Optional configuration steps
	Before compiling
	Testing the compiler

	Compiler usage
	File searching
	Command line files
	Unit files
	Include files
	Object files
	Configuration file
	About long filenames

	Compiling a program
	Compiling a unit
	Units, libraries and smartlinking
	Creating an executable for GO32V1 and PMODE/DJ targets
	GO32V1
	PMODE/DJ

	Reducing the size of your program

	Compiling problems
	General problems
	Problems you may encounter under DOS

	Compiler configuration
	Using the command-line options
	General options
	Options for getting feedback
	Options concerning files and directories
	Options controlling the kind of output.
	Options concerning the sources (language options)

	Using the configuration file
	#IFDEF
	#IFNDEF
	#ELSE
	#ENDIF
	#DEFINE
	#UNDEF
	#WRITE
	#INCLUDE
	#SECTION

	Variable substitution in paths

	The IDE
	First steps with the IDE
	Starting the IDE
	IDE Command line options
	The IDE screen

	Navigating in the IDE
	Using the keyboard
	Using the mouse
	Navigating in dialogs

	Windows
	Window basics
	Sizing and moving windows
	Working with multiple windows
	Dialog windows

	The Menu
	Accessing the menu
	The File menu
	The Edit menu
	The Search menu
	The Run menu
	The Compile menu
	The Debug menu
	The Tools menu
	The Options menu
	The Window menu
	The Help menu

	Editing text
	Insert modes
	Blocks
	Setting bookmarks
	Jumping to a source line
	Syntax highlighting
	Code Completion
	Code Templates

	Searching and replacing
	The symbol browser
	Running programs
	Debugging programs
	Using breakpoints
	Using watches
	The call stack
	The GDB window

	Using Tools
	The messages window
	Grep
	The ASCII table
	The calculator
	Adding new tools
	Meta parameters
	Building a command line dialog box

	Project management and compiler options
	The primary file
	The directory dialog
	The target operating system
	Compiler options
	Linker options
	Memory sizes
	Debug options
	The switches mode

	Customizing the IDE
	Preferences
	The desktop
	The Editor
	Mouse
	Colors

	The help system
	Navigating in the help system
	Working with help files
	The about dialog

	Keyboard shortcuts

	Porting Turbo Pascal Code
	Things that will not work
	Things which are extra
	Turbo Pascal compatibility mode
	A note on long file names under dos

	Utilities that come with Free Pascal
	Demo programs and examples
	Supplied programs
	ppudump program
	ppumove program
	ptop - Pascal source beautifier
	ptop program
	The ptop configuration file
	ptopu unit

	rstconv program
	fpcmake


	Units that come with Free Pascal
	Standard units
	Under DOS
	Under Windows
	Under Linux
	Under OS/2
	Unit availability

	Debugging your Programs
	Compiling your program with debugger support
	Using gdb to debug your program
	Caveats when debugging with gdb
	Support for gprof, the gnu profiler
	Detecting heap memory leaks
	Line numbers in run-time error backtraces
	Combining heaptrc and lineinfo

	CGI programming in Free Pascal
	Getting your data
	Data coming through standard input.
	Data passed through an environment variable

	Producing output
	I'm under Windows, what now ?

	Alphabetical listing of command-line options
	Alphabetical list of reserved words
	Compiler messages
	General compiler messages
	Scanner messages.
	Parser messages
	Type checking errors
	Symbol handling
	Code generator messages
	Errors of assembling/linking stage
	Unit loading messages.
	Command-line handling errors
	Assembler reader errors.
	General assembler errors
	I386 specific errors
	m68k specific errors.


	Run time errors
	The Floating Point Coprocessor emulator
	A sample gdb.ini file
	Options and settings

