810:063

Dr. McCormick

Fall 2007

Post Lab #12
This assignment is a variation of Post Lab #8. In this version you will prompt for and get six pieces of information from the user in the following order:

1. The name of a text file containing a newspaper story.

2. The name of text file in which to place the formatted newspaper story.

3. The maximum number of lines on a page in the formatted story (between 1 and 60)

4. The number of characters in a column in the formatted story (between 20 and 80).

5. The number of columns to appear on each page (between 1 and 5)

6. The number of spaces between columns (between 1 and 10)

You may assume that the two file names and four numbers entered by the user are valid. You may also assume that file names contain no more than 80 characters. From the directory P:\810‑063\Lab12\Postlab, copy the five files Unbounded_Word_IO.ads, Chronological_List.ads, Chronological_List.adb, Newspaper2.adb, and Columns.txt.
Unbounded_Word_IO.ads contains a specification for another word file class. It differs from the one we used earlier in that it returns an unbounded-length string. Your first task is to complete the body for this new word file class. Follow the basic logic of the bounded-length version making the simplifications resulting from the use of unbounded-length strings for all string objects. There is no longer a need to convert from one type of bounded-length string to another type of bounded-length string. You can test your new class with a modified version of the program you wrote for In Lab #8 that displayed the number of words in a file and the average number of letters in a word. You may include a use package clause for Ada.Strings.Unbounded in the body of Unbounded_Word_IO.
Chronological_List.ads, and Chronological_List.adb contain the specification and body of an array-based list whose items are ordered by time of insertion. You retrieve an item from a chronological list by giving its position in the list. Read over the specification and ask me if you have any questions. You should not change either of these files.

Newspaper2.adb contains a skeleton program for you to complete. Your program should read the story file and produce column output formatted according to the user supplied format information. The file Columns.txt contains sample output with 3 columns, 24 characters per column, 2 blanks between columns, and 45 lines per page.
Most likely, the last page of output will not be “full”. The last page should contain the same number of columns as the previous pages. The lines should be divided as equally as possible among the columns with the longer columns being to the left of the shorter columns. You can see an example of such a layout in the file Columns.txt. Here the first column contains 10 lines while the second and third columns each contain 9 lines. Use WordPad or Microsoft Word to see the columns and page breaks in this file. AdaGIDE and Notepad show the page breaks as a single graphic character.

Unlike Post Lab #8, you cannot begin to print a page until all the words for that page have been read. There are two major tasks to printing out one page: 1) Collect enough column lines to fill the page and 2) Print these column lines in the correct order

We can consider a page of output to consist of rows of "column lines". We can talk about the 3rd "column line" in the 4th row. Determining which column line in the chronological list to print in a given row and column is a problem very similar to the 2-dimensional columnwise array mapping formulas you studied in Computer Organization. See me if you would like to review these formulas. The skeleton program contains the code to map a given row and column to a list index.

Programming Requirements

· Do not modify Newspaper2's main subprogram.

· Do not add any additional subprograms to the skeleton program.

· Do not modify any of the pre- or postconditions in the skeleton program.

· Store column lines for a page in a chronological list.

Documentation Requirement

All subprogram parameters in your program must be documented. Use the parameter documentation in the procedures Calculate_List_Index and Get_Story_Info as guides.

Due at the beginning of class, Friday November 15th.

