810:063

Dr. McCormick

Spring 2006

Post Lab #6

A cardioverter-defibrillator is a device that monitors the rhythm of a person's heartbeat. Its role is to check the rhythm and, on detecting a major abnormality, to deliver an electric shock in an attempt to restore the rhythm to normal. You are asked to write a program for the microprocessor that controls the device. Copy the following files from P:\Courses\810-063\Lab06
heart.ads

Service package with heart operations

heart.adb

cardioverter.adb
A skeleton of a program to monitor and maintain a patient's heart rhythm

stats.ada

Examples of functions for calculating means and standard deviations

sampledata.txt
Sample data file

The interface to the patient's heart is provided by the service package called Heart. Read over the service package specification to learn the details of all its resources. I recommend that you do not read the service package body until you finish your program as the details it contains will only confuse you. You will, need to read this body to see how to develop and use a data file for testing. sampledata.txt contains data you can use for testing. You should also test with your own data as I will test your program with additional data files.

Here is how the controller is supposed to work. It obtains a group of readings of the heart through multiple calls of function Sense in package Heart. It then analyzes this group of readings. If the heart is beating too slowly (cardiac arrest) or too rapidly (fibrillating), the controller applies an electrical shock to the heart. Procedure Shock in package Heart applies this shock. This process is repeated. The software in a real cardioverter-defibrillator runs forever. In keeping with today's HMO policies, your program should run until the patient no longer has insurance to cover the cost of the device. Package Heart contains a Boolean function that returns the status of the patient's insurance coverage.

Now let's look at how the controller analyzes a group of heart readings. To check for normality it calculates the zero crossing count (ZCC). The ZCC is the number of times that the readings go from negative (less than zero) to non-negative (greater than or equal to zero) or vice-versa. Here's some example heart readings:

9 8 4 -2 -3 -5 0 6 0 -7 -1 -4 6 2 1 -5 4 8 3 1 2 -4 -8 7 4 -5 -3 1.

The ZCC in the first set of twelve readings is 3 and the ZCC in the second set of twelve readings is 5.

When looking for zero crossing, to what value do you compare the first reading in the set (the 9 in the above example)? For the first set, compare it to zero. For all other sets compare it to the last value of the previous set. In the example, we see that there is no zero crossing from the initial value, 0, to the first value, 9. In the second set of twelve values, there is a zero crossing from the initial value, -4, to the first value, 6. The initial value for the third set of twelve values is 7.

The ZCC is used to determine the status of the heart. If the ZCC is below a minimum percentage of the total readings, the heart is in cardiac arrest. If the ZCC is above a maximum percentage of the total readings, the heart is fibrillating. Otherwise, the heart rhythm is normal.

The heart sensor sometimes fails to obtain a valid reading. Function Sense raises the exception SENSE_ERROR if the reading is invalid. When this exception is raised, you should display an error message and take the next reading as the start of a new set of readings. The current set of readings is not analyzed when an invalid reading is found. Just as with the very first set of readings, compare the first value in this new set to zero (rather than the last reading of the previous set).

Input from Keyboard

Patient last name

Lower bound of healthy zero crossings (whole number between 10% and 30%)

Upper bound of healthy zero crossings (whole number between 70% and 95%)

Number of readings to use in activity calculations (whole number between 12 and 48)

Input from Patient via function Heart.Sense
Heart Muscle Activity

Output to Screen

Monitor initiation and termination messages.

One line for each monitoring cycle with

The number of zero crossings (use a width of 5)

Followed by the average of the heart readings (use a fore of 5 and aft of 1)

Followed by the standard deviation* of the heart readings (use a fore of 4 and aft of 2)

Followed by the status of heart (Normal Heart Rhythm, Cardiac Arrest!, or Fibrillation!)

Sensor failure messages (the words Sensor Failure!).

Assumptions you can make

Patient name contains no more than 60 characters

User enters a valid patient name

User enters valid lower and upper bound values

User enters valid number of readings for calculations

The patients insurance does not run out in the middle of set of heart readings

Programming requirements

Use appropriate abstract steps. A good portion of your grade will be based on your design.

Use appropriate scalar types for all quantities. Do a good job of modeling these objects.

All formal array parameters should be unconstrained.

Keeping with our assumptions about the data entered from the keyboard, if incorrect data is entered from the keyboard at start up time, your program should crash rather than run and endanger the patient's life. All you need do to accomplish this is use appropriate data types. You should not write any data validation exception handlers. (In a real program you would!)

Calculate the minimum and maximum number of zero crossings for normal heart rhythm from the input data (percent values and number of readings). Round your results to the nearest whole number. Do not change the ZCC to a percentage.

Program is due at the beginning of class on Friday February 24th. See class web page for instructions.

* The file stats.ada contains examples of functions for calculating averages and standard deviations.

