Lecture 22 – November 12, 2007

In class everyone filled in the Big O estimates of the running time of each of the following code fragments. We then went over the ones whose answers are shown in red. For homework, you are to determine the answers to the remaining two.

1. Determine a Big O estimate of the running time of each of the following code fragments. In each case, assume that the integer identifier N is proportional to the problem size:

Count := N;

loop

 exit when Count <= 0;

 -- some code without any loops

 Count := Count - 4;

end loop;

Big O

O(n)
for Count in 1..N loop

 -- some code without any loops

end loop;

for Count in reverse 1..N loop

 -- some code without any loops

end loop;

Big O

O(n)
Count := 1;

loop

 exit when Count >= N;

 -- some code without any loops

 Count := 17 * Count;

end loop;

Big O

O(lg n)
for Count in 1..2_500_000 loop

 -- some code without any loops

end loop;

Big O

O(1)
Count := 1;

loop

 exit when Count >= N;

 for Index in 1..Count loop

 -- some code without any loops

 end loop;

 Count := Count + 1;

end loop;

Big O

O(n2)
Count := 1;

loop

 exit when Count >= N;

 Index := Count;

 loop

 exit when Index <= 0;

 -- some code without any loops

 Index := Index / 13;

 end loop;

 Count := Count + 1;

end loop;

Big O

for Index in 1..N loop

 -- some code without any loops

end loop;

Count := 1;

loop

 exit when Count >= N;

 -- some code without any loops

 Count := 2 * Count;

end loop;

Big O

We discussed what was learned from the in-class exercise last week. Merge Sort and Quick Sort are faster than Bubble Sort and Insertion Sort. We reviewed their growth rates (Big O). Merge Sort and Quick Sort are O(N log2N), Bubble Sort and Insertion Sort are O(N2).
We learned that :

· 2N, .25N, N/4 are all O(N)

· Any constant is O(1)

· When the computation of the work yields something like (N2+3N)/2, the term with the biggest exponent dominates and the answer is O(N2).
What is the Big O of the program below?

O(1)
with Ada.Text_IO;

with Ada.Float_Text_IO;

procedure Pennies is

 Three_Pennies : constant Float := 0.03;

 Total_Dollars : Float;

begin

 Total_Dollars := 0.0; -- Initialize the sum
 for Count in 1..100_000 loop

 Total_Dollars := Total_Dollars + Three_Pennies;

 end loop;

 Ada.Float_Text_IO.Put (Item => Total_Dollars,

 Fore => 10,

 Aft => 2,

 Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Float_Text_IO.Put (Item => 100_000.0 * Three_Pennies,

 Fore => 10,

 Aft => 2,

 Exp => 0);

 Ada.Text_IO.New_Line;

end Pennies;

2. What output would you expect from the program above?
3000.00

3000.00
We spent time discussing that decimal fractions which terminate may not terminate as binary fractions.
We discussed how to convert a base ten decimal fraction into a base two binary fraction by repeatedly:

· multiplying the fraction by 2,

· using the integer portion of the product as a binary digit and then discarding it,

Example:

.3

x 2

0.6

x2

1.2

x2

0.4

x2

0.8

x2

1.6 repeats

answer: .01001…

We very briefly reviewed the notes from Nov. 5th (lecture 21)

We went on to define a binary tree as:

type node;

type nodepointer is access node;

private type node is record

info : integer;

left : nodepointer;

right : nodepointer;

end record;

We then wrote code to create some nodes and connect them in a binary tree

temp := new node;

temp.info := 14;

root := temp;

temp:= new node;

temp.info := 2;

if (temp.info < root.info) then

 root.left := temp;

-- else not completed

We then created a third node

temp := new node;

temp.info := -5;

and discovered that the code we wrote to find where to put it wouldn't work.

Assignment for Wednesday: Modified and simplified from in-class description
Write a program (an .adb) to create and insert nodes into their proper place in a binary search tree. Get the node values from the user. Loop 6 times to: get a value from the user, insert it in its proper place in the binary search tree. After you insert all 6 values, print the tree using the recursive inorder traversal algorithm. This algorithm should print out the values in ascending order if you have correctly inserted them into the binary search tree. Bring a printout of your code and of the output from it to class on Wednesday. Have your documentation (i.e. heading and descriptions) on a separate page from the rest of the code. Have your code on the M drive. See me tomorrow during office hours (10:30-11:30 am) or between 4:30 and 6:00 pm if you have questions.

