Here's the output of what I hoped would be the last version. What's wrong with it? ----jGRASP exec: F:\testFractions

 please enter the numerator of your fraction 7
 please enter the denominator of your fraction 9
 your fraction is: 7/9
 please enter the numerator of your fraction 5
 please enter the denominator of your fraction 6
 your fraction is: 5/6
 fraction1 + fraction2 is: your fraction is: 29/18
 fraction1 - fraction2 is: your fraction is: -1/18
 fraction2 - fraction1 is: your fraction is: 1/18
 fraction1 * fraction2 is: your fraction is: 35/54
 fraction1 / fraction2 is: your fraction is: 14/15
 fraction2 / fraction1 is: your fraction is: 15/14
 fraction1 is equal to fraction two is: FALSE
 fraction1 is less than fraction two is: TRUE
 fraction1 greater than or equal to fraction two is: FALSE
 your fraction is: 7/9 as an integer is:
 0 as a fraction is:
 this program has terminated normally

----jGRASP: operation complete.
Here's the program that created it: New or changed lines are: 9 and 73-84

 1 with Fractions;
 2 with ada.text io;
 3 with ada.integer text io;
 4 with fraction io;
 5 procedure testFractions is
 6
 7 package boolean io is new ada.text io.enumeration io (enum => boolean);
 8 fraction1, fraction2, fraction3 : Fractions.fraction;
 9 N, D, myInteger : integer;
10 result : boolean;
11
12 begin
13 -- get the first fraction and show it back to user
14 fraction io.getFraction (N,D);
15 fraction1 := fractions.makeFraction(N,D);
16 fraction io.putFraction(fraction1);
17 ada.text io.new line; -- added to improve output
18
19 -- get a second fraction and show it back to the user
20 fraction io.getFraction (N,D);
21 fraction2 := fractions.makeFraction(N,D);
22 fraction io.putFraction(fraction2);
23 ada.text io.new line; -- added to improve output
24
25 -- now start testing other functions
26
27 ada.text io.put (" fraction1 + fraction2 is: ");
28 fraction3 := fractions."+" (fraction1, fraction2);
29 fraction io.putFraction (fraction3);
30 ada.text io.new line;
31
32 ada.text io.put (" fraction1 - fraction2 is: ");
33 fraction3 := fractions."-" (fraction1, fraction2);
34 fraction io.putFraction (fraction3);
35 ada.text io.new line;
36
37 ada.text io.put (" fraction2 - fraction1 is: ");
38 fraction3 := fractions."-" (fraction2, fraction1);
39 fraction io.putFraction (fraction3);
40 ada.text io.new line;
41
42 ada.text io.put (" fraction1 * fraction2 is: ");
43 fraction3 := fractions."*" (fraction1, fraction2);
44 fraction io.putFraction (fraction3);
45 ada.text io.new line;
46
47 ada.text io.put (" fraction1 / fraction2 is: ");
48 fraction3 := fractions."/" (fraction1, fraction2);
49 fraction io.putFraction (fraction3);
50 ada.text io.new line;
51
52 ada.text io.put (" fraction2 / fraction1 is: ");
53 fraction3 := fractions."/" (fraction2, fraction1);
54 fraction io.putFraction (fraction3);
55 ada.text io.new line;
56
57 -- now let for some tests of the relational operators
58 ada.text io.put (" fraction1 is equal to fraction two is: ");
59 result := fractions.equal(fraction1, fraction2);
60 boolean io.put (result);
61 ada.text io.new line;
62
63 ada.text io.put (" fraction1 is less than fraction two is: ");
64 result := fractions."<"(fraction1, fraction2);
65 boolean io.put (result);
66 ada.text io.new line;
67
68 ada.text io.put (" fraction1 greater than or equal to fraction two is: ");
69 result := fractions.">="(fraction1, fraction2);
70 boolean io.put (result);
71 ada.text io.new line;
72
73 -- fractToInt and IntToFract
74 fraction io.putFraction(fraction1);
75 ada.text io.put (" as an integer is: ");
76 myInteger := fractions.fractToInt (fraction1);
77 ada.text io.new line;
78
79 ada.integer text io.put (myInteger);
80 ada.text io.put (" as a fraction is: ");
81 fraction3 := fractions.IntToFract (myInteger);
82 ada.text io.new line;
83
84 ada.text io.put line(" this program has terminated normally ");
85
86 end testFractions;

