Class Notes 9/21/06 – courtesy of Shawn
Exceptions


Define exception


Raise exception


Handle exception


Some are pre-defined


Constraint error

We looked at the code Daniel shared with us for version of stack.adb and discussed it and modified it.

-- Assignment : Homework due Sept. 21st, 2006

-- Programmer : Daniel

-- Course : CS 240

-- Date : Sept. 20th, 2006

-- Compiler : gcc with gnat

-- Professor : Elizabeth Adams

-- Filename : stack.adb

-- Executable :

-- Version : 0.2

-- Purpose: To implement the operations of the stack data type as dicussed in class.

-- Input : none

-- Output

-- To Screen : Messages in the event of an error pushing or

-- popping from a full or empty stack, respectively.

-- Modifications:

--

-- Version 0.2 : A typo fixed in the peek declaration!

with ada.text_io;

-- use ada.text_io;

package body stack is

-- pre-Condition : theStack exists and theValue exists

-- post-Condition : theValue has been added to the stack

-- raises error if theStack is full

 procedure push (theStack : in out stackType;

 theValue : in Integer) is

 begin

 if not (theStack.top = theStack.MAXDATA) then

 theStack.top := theStack.top + 1;

 theStack.aStack(theStack.top) := theValue;

 else

 ada.text_io.put_line ("A number could not be added to the stack, because it is full.");

 end if;

 end push;

 procedure pop (theStack : in out stackType;

 theValue : out Integer) is

 begin

 if (theStack.top > 0) then

 theValue := theStack.aStack(theStack.top);

 theStack.top := theStack.top - 1;

 else

 ada.text_io.put_line

("A number could not be popped off of the stack, because it is empty.");

 end if;

 end pop;

 procedure peek (theStack : in stackType;

 theValue : in out Integer) is

 begin

 if (theStack.top /= 0) then

 theValue := theStack.aStack(theStack.top);

 else

 ada.text_io.put_line ("A number could not be peeked at, because the stack is empty.");

 end if;

 end peek;

 procedure makeEmpty (theStack : in out stackType) is

 begin

 theStack.top := 0;

 end makeEmpty;

 function isFull (theStack : in stackType) return boolean is

 result : boolean;

 begin

 result := false;

 if (theStack.top > theStack.MAXDATA) then

 result := true;

 end if;

 return result;

 end isFull;

 function isEmpty (theStack : in stackType) return boolean is

 result : boolean;

 begin

 result := false;

 if (theStack.top = 0) then

 result := true;

 end if;

 return result;

 end isEmpty;

end stack;

procedure push


Preconditions - were added in class

The stack exists


The value exists


The stack is NOT full


Postconditions – were added in class

The value has been added to the stack

· There is an error if the stack was full
· Removed the USE clause and added fully qualified references

· Corrected the test for truth of a boolean variable

· Discussed whether to increment the stack top before or after pushing a value on the stack

· Dan had modified the specification by adding a constant MAX value to the stack size instead of using a literal
. We added the comments to each procedure and function specification.

-- Assignment : Homework due Sept. 21st, 2006

-- Programmer : Daniel

-- Course : CS 240

-- Date : Sept. 20th, 2006

-- Compiler : gcc with gnat

-- Professor : Elizabeth Adams

-- Filename : stack.ads

-- Executable :

-- Version : 0.2

-- Purpose: To specify the stack data type as discussed in class with its data types and operations

-- Input : none

-- Output : none

-- Modifications: The MAX constant determines the maximum size of a given

-- stack.

--

-- Version 0.2 : An off-by-one error fixed in the type declaration of

-- my array, and a typo fixed in the peek declaration.

package stack is

 MAX : constant Integer := 20;

 type myArray is array (1..MAX) of Integer;

 type stackType is record

 top : Integer; -- alternate choice is top := 0 : Integer;

 aStack : myArray;

 MAXDATA : Integer := MAX; -- added to original specification

 end record;

 procedure push (theStack : in out stackType; -- procedure to put an item on the stack

 theValue : in Integer); -- modifies stack

 procedure pop (theStack : in out stackType; -- procedure to pop an item off the stack

 theValue : out Integer);

 -- modifies stack by removing the top value

 procedure peek (theStack : in stackType;

 -- procedure to look at top of stack

 theValue : in out Integer); -- leaves stack unchanged

 procedure makeEmpty (theStack : in out stackType); -- creates an empty stack

 -- alters stack by setting top pointer

 function isFull (theStack : in stackType) return boolean; -- tests the stack for fullness

 -- doesn't alter stack

 function isEmpty (theStack : in stackType) return boolean; -- tests the stack for emptiness

 -- doesn't alter stack

end stack;

Designing the Test Program

First, before writing any code DESIGN THE TEST.

Things to test:

1.
isEmpty

2.
peek

3.
push

4.
pop

5.
isFull

6.
makeEmpty
Note: lines in red show the declaration and instantiation of an enumerated type. They are not part of this assignment. They are just an illustration.

-- Assignment : inClass program to test stack package

-- Programmer : entire class

-- Course : CS 240

-- Date : Sept. 21th, 2006

-- Compiler : gcc with gnat

-- Professor : Elizabeth Adams

-- Filename : stackTest.adb

-- Executable :

-- Version : 0.1

-- Purpose: test all of the methods in the stack package to see if they

--

 work as desired

-- Input : integers to be pushed onto the stack

-- Output

-- messages telling what procedure/function is being tested (labels)

-- data values being pushed onto and popped from stack

-- data values at top of stack

-- status of stack

-- Modifications:

--

-- Version 0.1 :

WITH ada.text_io;

WITH ada.integer_text_io;

WITH stack;

PROCEDURE stackTest is

 status: boolean;

 testStack : stack.stackType;

-- the following two lines do not belong in THIS program and should be removed

 type fruit is (apple, berry, cherry, banana);

 myfruit : fruit;

-- the following line is an instantiation for an enumerated type which allows us to read and

-- write values of that type

package boolean_io is new Ada.Text_io.Enumeration_io (boolean);

-- the following line desn't belong in THIS program : it should be removed

package fruit_io is new Ada.Text_io.Enumeration_io (fruit);

BEGIN

-- test the status of the stack to see if is empty

ada.text_io.put

 (" testing the status of the stack - expect it to be empty output should be TRUE ");

-- call function

status := stack.isEmpty (testStack);

boolean_io.put (status);

ada.text_io.new_line(1);

-- the following lines don’t belong in THIS program : they should be removed

myfruit := apple;

fruit_io.put (myfruit);

END stackTest;

Other Notes


In general, you don't need to worry as much about adding headings to .ads files.


Comments should be added to a package specification file to explain what each procedure does, i.e.

procedure push (theStack : in out stackType; -- procedure to put and item ...


Use IF NOT when doing a boolean test. Never ever ever in any programming language compare a boolean variable to the actual boolean value.


DO NOT change specifications when working on a project unless discussing it with someone.

· Reserved words should be in uppercase.
· Ada is not case sensitive.
· A boolean is an enumerated type: {false true} (false is less than true.)
· Instantiation for boolean type: package boolean_io is new Ada.ext_io.Enumeration_io (boolean);
· You can either define in your record that the top of the stackType has a starting value of 0, or you can require users of the stackType to call makeEmpty for each new stack which will do it.
boolean variable done

done : boolean;

if not (done) then -- shows test of boolean variable
 -- do what you want to do here
end if;

if (done) then -- use this if you don’t remember how to use NOT
null;

else

 -- do what you want to do here
end if;

DeMorgan's Laws
If NOT(A and B) == If (NOT A or NOT B)
If NOT (A or B) == if (NOT A AND NOT B)

Homework: re-write your code so it works for floating point numbers. Bring printouts of integer version and floating point versions to class on Tuesday.

