Lecture 22 – November 14th

Heap Sort (starting with a min-heap)

Note that the top line of the table shows the array indices while the other lines show values

Draw the tree before and after each swap. Do not include the red elements in the tree you draw.

	1
	2
	3
	4
	5
	6
	7
	8

	4
	8
	7
	9
	21
	13
	10
	15

First step – swap the last element (value) in the tree with the first one

	1
	2
	3
	4
	5
	6
	7
	8

	15
	8
	7
	9
	21
	13
	10
	4

Now the smallest element in the array is in the last position and will never be moved or looked at again during the sort process.

However, the array no longer represents a min-heap because the root is not smaller than either of its children.

Next step – make it a min-heap again by the following steps

Swap the element at the root (position 1) with the smaller of its children (positions 2 or 3)

	1
	2
	3
	4
	5
	6
	7
	8

	7
	8
	15
	9
	21
	13
	10
	4

Now swap the element in position 3 (which is not smaller than both its children) with the smaller of its children

	1
	2
	3
	4
	5
	6
	7
	8

	7
	8
	10
	9
	21
	13
	15
	4

Now swap the element in position 1 with the last element in the array (the one in position 7 -remember that we are no longer considering the element in position 8) . Now the element in position 7 is in its correct position and we will not consider it again. But again, we no longer have a min-heap so we need to make it a min-heap

	1
	2
	3
	4
	5
	6
	7
	8

	15
	8
	10
	9
	21
	13
	7
	4

Swap element in position 1 with the smaller of its children (position 2 or 3)

	1
	2
	3
	4
	5
	6
	7
	8

	8
	15
	10
	9
	21
	13
	7
	4

Now swap the element in position 2 with the smaller of its children (position 4 or 5)

	1
	2
	3
	4
	5
	6
	7
	8

	8
	9
	10
	15
	21
	13
	7
	4

Now swap the element in position 1 (the smallest element in the heap) with the last element in the array (ignoring the red elements)

	1
	2
	3
	4
	5
	6
	7
	8

	13
	9
	10
	15
	21
	8
	7
	4

Again, we don’t have a min-heap so swap the element in position 1 with the smaller of its children (positions 2 and 3). After this swap we do have a min-heap

	1
	2
	3
	4
	5
	6
	7
	8

	9
	13
	10
	15
	21
	8
	7
	4

Now swap the element in position 1 (the smallest element in the heap) with the last element in the array (ignoring the red elements)

	1
	2
	3
	4
	5
	6
	7
	8

	21
	13
	10
	15
	9
	8
	7
	4

Again, we don’t have a min-heap so swap the element in position 1 with the smaller of its children (positions 2 and 3). After this swap we do have a min-heap

	1
	2
	3
	4
	5
	6
	7
	8

	10
	13
	21
	15
	9
	8
	7
	4

Now swap the element in position 1 (the smallest element in the heap) with the last element in the array (ignoring the red elements)

	1
	2
	3
	4
	5
	6
	7
	8

	15
	13
	21
	10
	9
	8
	7
	4

Again, we don’t have a min-heap so swap the element in position 1 with the smaller of its children (positions 2 and 3). After this swap we do have a min-heap

	1
	2
	3
	4
	5
	6
	7
	8

	13
	15
	21
	10
	9
	8
	7
	4

Now swap the element in position 1 (the smallest element in the heap) with the last element in the array (ignoring the red elements). We do have a min-heap

	1
	2
	3
	4
	5
	6
	7
	8

	21
	15
	13
	10
	9
	8
	7
	4

Now swap the element in position 1 (the smallest element in the heap) with the last element in the array (ignoring the red elements).

	1
	2
	3
	4
	5
	6
	7
	8

	15
	21
	13
	10
	9
	8
	7
	4

We are now done since we have a one-element tree and the array has been sorted..

