Lecture_20 – November 7, 2006
We went over the specification for the generic stack package and discussed:

generic parameters

the purpose of each function and procedure

the pre-conditions for each procedure and function

that the pop procedure just alters the stack but doesn’t return a value which

means that in order to retrieve the value peek has to be called first

everyone downloaded the specification – which is also shown below

	GENERIC

 TYPE Element IS PRIVATE;

PACKAGE Stacks_Generic IS

TYPE Stack (Capacity: Positive) IS LIMITED PRIVATE;

 StackFull : EXCEPTION;

 StackEmpty: EXCEPTION;

 PROCEDURE MakeEmpty (S : IN OUT Stack);

 PROCEDURE Push (S : IN OUT Stack; E : IN Element);

 PROCEDURE Pop (S : IN OUT Stack);

 FUNCTION Peek (S: IN Stack) RETURN Element;

 FUNCTION IsEmpty(S : IN Stack) RETURN Boolean;

 FUNCTION IsFull (S : IN Stack) RETURN Boolean;

 PRIVATE

 TYPE List IS ARRAY (Positive RANGE <>) of Element;

 TYPE Stack (Capacity : Positive) IS RECORD

 Latest : Natural := 0;

 Store : List(1..Capacity);

 END RECORD;

END Stacks_Generic;

We discussed the assignment which will be due on Friday by Midnight in the drop box with yourname16.zip containing the given specification and your implementation.

The assignment is to complete the implementation of the generic stack package (i.e. the body).

We ran the program I wrote to test MY generic stack package implementation and

discussed the features necessary for a good test program. We discussed and looked at the necessary declarations and instantiations to test the program for different data types. Everyone downloaded the code which is also shown below.

	WITH ada.text_io;

WITH Stacks_Generic;

PROCEDURE Stacks_Generic_Test IS

TYPE fruit IS (apple, berry, cheery, banana, orange, blueberry);

TYPE cars IS (corolla, Super308, carrera, sylvia);

PACKAGE fruit_io IS NEW ada.text_io.Enumeration_io (fruit);

PACKAGE bool_io IS NEW ada.text_io.Enumeration_io (boolean);

PACKAGE cars_io IS NEW ada.text_io.Enumeration_io (cars);

PACKAGE Stacks IS NEW Stacks_Generic

 (Element => Character);

PACKAGE FruitStack IS NEW Stacks_Generic

 (Element => fruit);

PACKAGE CarStack IS NEW Stacks_Generic

 (Element => cars);

 myFruitStack : FruitStack.Stack (20);

 aStack : Stacks.Stack (5);

 parkingLot : CarStack.Stack (50);

BEGIN

-- test 1

 ada.text_io.put (" about to call MakeEmpty ");

 Stacks.MakeEmpty (aStack);

 FruitStack.MakeEmpty (myFruitStack);

 CarStack.MakeEmpty (parkingLot);

 ada.text_io.put (" stack should not be full so will call isFull ");

 ada.text_io.put (" expect FALSE FALSE FALSE ");

 bool_io.put (Stacks.isFull(aStack));

 bool_io.put (CarStack.isFull (parkingLot));

 bool_io.put (FruitStack.isFull (myFruitStack));

 ada.text_io.new_line;

Everyone downloaded the executable which tests MY program (not yours).

Its only value is to show you what a good test might be. You will need to test your program yourselves. When I grade yourname16 I will compile my test program with your spec and body. The test program you write as yourname17 (i.e. your test program which is due Monday at midnight) will be compiled and tested with MY implementation.
Here are some of the things my test program will test:

1. makeEmpty at start of program

2. makeEmpty in middle of program

3. push onto a full stack

4. push onto a non-full stack

5. pop from an empty stack

6. pop from a non-empty stack

7. peek at an empty stack

8. peek at a non-empty stack

9. is a stackFull exception raised

10. is a stackEmpty exception raised

It will test these things on different data types and in appropriate places.

We looked at a specification for a binary search tree which differs from the one in our book. FOR THURSDAY you should study it (which is shown below) and write and bring to class a stubbed out implementation.
	PACKAGE Binary_Search_Trees IS

 TYPE BinaryTreeNode;

TYPE Tree IS ACCESS BinaryTreeNode;

TYPE BinaryTreeNode IS RECORD

 Info : Integer;

Left : Tree := NULL;

Right: Tree := Null;

END RECORD;

 NotFound : Exception;

 PROCEDURE Initialize (T : in out Tree);

 PROCEDURE Insert (T : IN OUT Tree; E : Integer);

 FUNCTION Search (T : Tree; K : Integer) RETURN Tree;

 FUNCTION Retrieve (T : Tree) RETURN Integer;

 PROCEDURE Delete (T : IN OUT Tree; K : IN Integer);

 PROCEDURE Traverse_LNR (T : Tree);

-- PROCEDURE Traverse_NLR (T : Tree);

-- PROCEDURE Traverse_LRN (T : Tree);

END Binary_Search_Trees;

You should also look at the implementations given in the book for the procedures and functions in their specification which match the ones in ours.
