Notes October 31,2006

Happy Halloween

TREE

 Binary tree

 Can be implemented as an array yet some sort of linked structure is more frequentle.

 What would a node look like in this case?

 --Node and two pointers

 --left pointer and a right pointer

 Type link is new access node;

Type node is record

 Data : integer;

 Left : link;

 Right : link;

What might you want to do with the tree? i.e. what operations will have to be implement?
 --add values to the tree

 --delete values from the tree
 --search for a value in the tree

 --Order the tree – as you construct it!!!
 --Print the values in the tree starting at the root.

Parts of the tree

root-—has no PARENT
every other node has at most two children—0,1,or two children.

a node with no children is a LEAF.

 --get parent, add parent ly imposible

 --Make empty

 TRAVERSING—going through the tree

 Needed to add, search and order

Array structure- root| root left|root right|root left left| root left right

--Binary tree has at most two children

--Height –number of levels in a tree, start with 0

PERFECT BINARY TREE—a binary tree which all of the leaves are on the same level and every non leaf has two children.

 HEAP—binary tree implemented as an array
[] binary tree

Each subtree is a binary tree

 Binary tree versus—binary search tree

 Search tree is ordered!

 5

-2 6

 3 17

Building a binary search tree

 --check for empty tree

 -- if empty—pointer becomes root

 --else

--is the n greater than root.value

 Becomes roots right child

 Else

 Look at left child
Ancestor—someone further up the tree

Descendant-below a given node in a tree

TRAVERSING THE TREE

 Go through level by level

Use a queue

BREADTH FIRST SEARCH—level by level traversal of a tree

DEPTH FIRST SEARCH—go down

Check root

 If not empty—print value

 Check left st. if not empty print value

--insert notes on traversals—hard to type out
Ch. 10 pg 627 for 3 traversal types

