	Software Testing
An Introduction with Examples in Java

	Prof. David Bernstein
James Madison University

	

	Computer Science Department

	bernstdh@jmu.edu[image: image1.png]

	

Some Perspective

· Validation:

· Are we building the product we are supposed to be building?

· Sommerville: Are we building the right product?

· Fox: Is the product we are building adequate?

· Verification:

· Does the product we are building do what it does correctly?

· Sommerville: Are we building the product right?

· Fox: Is the product rugged (i.e., reliable, robust and safe)?

Terminology

· Failure:

· Incorrect/missing behavior

· Fault (or Defect):

· An error/mistake (either of omission or commission)

· Trigger Conditions:

· The conditions that cause a fault to result in a failure

· Symptom:

· A characteristic of a failure (that helps you recognize that a failure has occurred)

Terminology (cont.)

 // some details omitted

 int a,b,c;

 a = in.nextInt();

 b = in.nextInt();

 c = a/b;

· Trigger Condition?

· Failure?

· Symptom?

· Fault/Defect?

Types of Faults

· Algorithmic: A block of code does not generate the proper output for a given input

· Precision: The computation is not performed to the desired accuracy

· Checking: The inputs are not validated before the computation is performed

· Stress/Overload: The problem occurs when data structures are filled past their capacity

· Assignment: Fault in variable/data structure initialization

· Throughput/Performance: A block of code does not perform at the required speed

· Timing/Coordination: Involves shared resources

· Recovery: A block of code does not respond to another fault appropriately

An Important Distinction

· Testing:

· Confirming the presence of faults/defects

· In reliability testing the test cases should reflect normal operating conditions

· In robustness testing the test cases should cover a wide variety of conditions

· Debugging:

· Locating and repairing faults/defects

Code Reviews

· Desk Checking:

· The programmer reads through the program (and traces the execution) herself/himself

· Code Walkthrough:

· The programmer gives her/his code to a review team and leads an (informal) discussion

· Code Inspection:

· A review team checks the code against a prepared list of concerns

Testing Approaches

· Black Box (or Closed Box):

· The tester has information about the form of the inputs and the outputs, but not about the "internals" of the component being tested

· State Box:

· The tester has information about the "pre" state and "post" state, as well as the form of the inputs and outputs

· White Box (or Clear/Open Box):

· The tester knows the internal details of the component being tested

The Stages of Testing

· Unit Testing (or Module/Component Testing):

· A component is tested on its own (in isolation from any other components)

· Integration Testing:

· Interface Testing: Components are tested in combination to ensure that information is passed between them properly

· Function Testing: The system is tested to ensure that it provides the required functionality

· Performance Testing: The system is tested to ensure that it provides the required performance

· System Testing:

· The system is tested to ensure that it does what the customer wants it to do

More Terminology

· Test Case (or Test Point):

· A particular choice of inputs

· Test:

· A collection of test cases

· Follow-Up Test Case:

· A test case that is created after another test case reveals a symptom/failure (used to determine if a fault is more serious than it appears and/or more general than it appears)

Black-Box Unit Testing

· A Popular Approach:

· Supply the unit with all possible inputs

· Some Realities:

· The number of test cases can be very large!

· How do you check the results?

· The state may matter (hence the sequence of test cases may matter as may things in the broader system)

Black-Box Unit Testing (cont.)

· Random Testing:

· Generate test cases randomly

· Heuristic Testing:

· Generate test cases using "rules of thumb"

· Extreme values are thought to be the most likely to cause a failure

Black-Box Unit Testing (cont.)

· Value Heuristics:

· Extreme values are thought to be the most likely to cause a failure (e.g., include a test case with a large positive value, a small positive value, 0, a large negative number, a small negative number)

· Include type mismatches (e.g., characters for integers)

· Array Heuristics:

· Include a small array, large array, 0-length array

· Include unsorted, sorted ascending, and sorted descending arrays

· Include arrays with one value (e.g., all negative, all positive, all 0)

A Mixture of Black-Box and Clear-Box Unit Testing

· A Popular Approach:

· Categorize the possible inputs into equivalence classes to reduce the number of tests

· Some Realities:

· This is often difficult to do!

· How do you check the results?

· The state may matter (hence the sequence of test cases may matter as may things in the broader system)

Clear-Box Unit Testing

· Statement Testing:

· Make sure every statement is executed

· Branch Testing:

· Make sure every "branch" (resulting from conditionals) is executed

· Path Testing:

· Make sure every path through the code is executed

· Other Approaches:

· All Uses Testing

· All Predicate Uses Testing

· All Computational Uses Testing

Clear-Box Unit Testing (cont.)

An Example

 public static int calculate(int x, int y)

 {

 int a, b;

 do

 {

 a = 1; // S1

 if (x > y) // S2

 {

 a = 2; // S3

 }

 x++; // S4

 b = x * a; // S5

 }

 while (b <= 0); // S6

 return b; // S7

 }

· Testing Every Statement:

· calculate(5, 2) (S1-S2-S3-S4-S5-S6-S7)

· Testing Every Branch:

· calculate(5, 2) (S1-S2-S3-S4-S5-S6-S7)

· calculate(-2, 5) (S1-S2-S4-S5-S6-S1)

· Testing Every Path:

· calculate(5, 2) (S1-S2-S3-S4-S5-S6-S7)

· calculate(-2, 5) (S1-S2-S4-S5-S6-S1)

· calculate(-1,-2) (S1-S2-S3-S4-S5-S6-S1)

· calculate(1, 2) (S1-S2-S4-S5-S6-S7)

Strategies for Integration Testing

· Bottom Up:

· Test all of the lowest level components first

· Add components that use tested components

· Top Down:

· Test the top level component first (using stubs)

· Add components called by the tested component(s)

· Big Bang:

· Test all components in isolation

· Test the entire system

Checking the Outputs

· An Observation:

· Automated testing depends on our ability to detect failed tests automatically

· A Solution:

· Have an oracle that knows the truth

· A Complication:

· An imperfect oracle can lead to both Type I and Type II errors
Type I errors (or α error, or "false positive) and type II errors (β error, or a false negative) are two terms used to describe statistical errors. - from Wikipedia
· http://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Definitions
"Bugs" Beginning Programmers Should Watch Out For

· Arithmetic Operators:

· Divide by zero

· Misuse of integer division

· Conditions:

· Misuse of = for ==

· Misuse of == for .equals()
· Loops:

· Incorrect initialization (initializing to the wrong value or initializing the wrong variable)

· Incorrect update (updating by the wrong amount or updating the wrong variable)

· Incorrect termination (e.g., off by one)

· break mistakes

"Bugs" To Watch Out For (cont.)

· Arrays:

· Uninitialized elements

· Use of unallocated elements (i.e., oversteping array bounds)

· Methods/Functions:

· Returning the wrong value/variable

· Multiple return statements

· Classes:

· Attributes inappropriately declared static

· Attributes and local variables with the same name

· Missing constructors

· Confusing aliases, shallow copies, and deep copies

· Misuse of overloaded methods

· Derived Classes:

· Accidental inclusion of a shadow attribute

· Failure to call the parent's constructor

· Misuse of overridden methods

