
Lab Solutions: Experimenting with Enumerated Types file:///d:/labs-solutions/experimenting_enumerated-types/part1/index.php

1 of 5 2/16/2007 11:07 AM

Lab Solutions: Experimenting with Enumerated Types

1 Instructions: Omitted.

2 Getting Ready: Omitted.

3 Using Integer Constants Instead of Enumerated Types: It is common practice to use a
group of integer contants rather than an actual enumerated type. This part of the lab will
help you see some of the problems with this approach.

Open Constants, SemesterUtiltities, and Example1.java in the editor.1.

Compile Constants, SemesterUtiltities, and Example1.java.2.

Execute Example1.3.

What output was generated?

Session starting months in 2006:
January
August

4.

Change FALL to TALL in Constants.java.5.

Compile Constants.java.6.

Execute Example1.7.

What output was generated?

Session starting months in 2006:
January
August

8.

You might be surprised that Example1 executed given that it uses Constants.FALL
which is no longer defined. Why did it execute? (You may not know the answer to
this question but you should be able to make some conjectures.)

The values of the constants in the Constants class are compiled into Example1.

9.

Compile Example1.java.10.

What error was generated?

Example1.java:10: cannot find symbol
symbol : variable FALL
location: class Constants
 for (int i=Constants.SPRING; i<=Constants.FALL; i++)
 ^
1 error

11.

Change TALL back to FALL in Constants.java.12.

Lab Solutions: Experimenting with Enumerated Types file:///d:/labs-solutions/experimenting_enumerated-types/part1/index.php

2 of 5 2/16/2007 11:07 AM

Add the constant SUMMER to Constants.java and assign it the value 2.13.

Compile Constants.java and Example1.java (remembering that it is very
important to compile Example1.java even though it did not change).

14.

Execute Example1.15.

What output was generated?

Session starting months in 2006:
January
August

16.

What is wrong with this output and what caused the problem?

The summer session is missing because we added the SUMMER session "after" the
FALL session.

17.

Put SUMMER and FALL in the proper order (in Constants.java) and adjust their
values accordingly.

18.

Compile Constants.java and Example1.java.19.

Execute Example1.20.

What output was generated?

Session starting months in 2006:
January
August
August

21.

What is wrong with this output and what caused the problem?

The summer session is shown starting in August when, in fact, it starts in May. This
is a problem with the startingMonth() method in the SemesterUtilties class
shich should have been changed when Constants.java was changed (but the
compiler did not force us to make a change).

22.

Add the line:

 System.out.println(SemesterUtilities.startingMonth(7));

to the main() method in Example1.java.

23.

Will this version of Example1.java compile?

Yes, it is syntactically correct.

24.

What output would be generated by this statement?

August

25.

Why is this somewhat troubling?26.

Lab Solutions: Experimenting with Enumerated Types file:///d:/labs-solutions/experimenting_enumerated-types/part1/index.php

3 of 5 2/16/2007 11:07 AM

Because the startingMonth() method can be passed any int but we'd really like
the compiler to make sure that we are passing a valid semester (i.e., we'd like the
compiler to perform type-checking).

What output would be generated by the statement:

 System.out.println(Constants.SPRING);

0

27.

What output would be more informative for the previous statement?

Something like "Spring" would certainly be much more descriptive.

28.

4 Using String Constants Instead of Enumerated Types: It is also common practice to
use a group of String contants rather than an actual enumerated type. This part of the lab
will help you see some of the additional problems with this approach.

Open Example2.java in the editor.1.

Compile and execute Example2.java.2.

What output was generated?

Grade on first attempt: B-
Grade on second attempt: B+

3.

The method String.compareTo(java.lang.String) can be used to compare two
String objects. Use this method to assign second to better if
second.compareTo(first) is greater than 0 and to assign first to better
otherwise.

4.

What code did you add to the main() method in Example2.java.

 if (second.compareTo(first) > 0) better = second;
 else better = first;

5.

Add the line:

 System.out.println("Better grade: "+better);

to the end of the main() method in Example2.java.

6.

Compile and execute Example2.java.7.

What output was generated?

Grade on first attempt: B-
Grade on second attempt: B+
Better grade: B-

8.

What is wrong with this output and why?

A "B+" is better than a "B-". Unfortunately, "B-" is lexicographically larger than

9.

Lab Solutions: Experimenting with Enumerated Types file:///d:/labs-solutions/experimenting_enumerated-types/part1/index.php

4 of 5 2/16/2007 11:07 AM

"B+".

How does a "B" compare to a "B-" at JMU and in Java?

A "B" is better than a "B-" at JMU but "B-" is lexicographically larger than "B" in
Java.

10.

5 Using a Simple Enumerated Types: This part of the lab will help you see some of the
advantages of using enumerated types. You will explore some of the other benefits later.

Open Example3.java in the editor.1.

Compile and execute Example3.java.2.

What output was generated?

First is better

3.

What determines the order used by the compareTo() method?

The order in which the values appear in the enumeration.

4.

What .class files were created when you compiled Example3.java? (Hint: Look
for all files that start with "Example3" and end with ".class".)

Example3$LetterGrade.class
Example3.class

5.

Move the lines:

public enum LetterGrade
{
 F, D, DPLUS, CMINUS, C, CPLUS, BMINUS, B, BPLUS, AMINUS, A;
}

from Example3.java and into a file named LetterGrade.java.

6.

Delete all of the .class files in the directory you created for this lab.7.

Compile LetterGrade.java and Example3.java.8.

What .class files were generated?

Example3.class
LetterGrade.class

9.

Execute Example3.java.10.

What output was generated?

First is better

11.

Suppose JMU instituted a grade of "D-". What changes would you need to make to
LetterGrade.java?

Add a DMINUS between F and D.

12.

Lab Solutions: Experimenting with Enumerated Types file:///d:/labs-solutions/experimenting_enumerated-types/part1/index.php

5 of 5 2/16/2007 11:07 AM

6 Creating a Simple Enumerated Types: This part of the lab will give you some
experience creating a simple enumerated type.

Create an enumerated type named Sessions.java that includes a Spring, Summer,
and Fall semester (in the appropriate order for a calendar year).

public enum Sessions
{
 SPRING, SUMMER, FALL;
}

1.

Modify SemesterUtilities.java and Example1.java so that they work correctly
with this enumerated type. (Hint: Think about using a "for each" loop.)

public class SemesterUtilities
{
 public static String startingMonth(Sessions semester)
 {
 String month;

 month = "N/A";

 if (semester.equals(Sessions.SPRING)) month = "January";
 else if (semester.equals(Sessions.SUMMER)) month = "May";
 else if (semester.equals(Sessions.FALL)) month = "August";

 return month;
 }
}

public class Example1
{
 public static void main(String[] args)
 {
 int semester;

 System.out.println("Session starting months in 2006: ");

 for (Sessions s: Sessions.values())
 {
 System.out.println(SemesterUtilities.startingMonth(s));
 }
 }
}

2.

Department of Computer Science

Copyright 2006

