Gradesheet for Lab 5 - File IO – 70 points maximum
Name _________________________ Score ___________________

	
	
	Program Specified Requirements
	Yes
	No

	1
	1
	Your program must welcome the user
	
	

	2
	2
	Your program should tell the user what the it will do
	
	

	3
	1
	Your program should prompt the user for the name of the input file
	
	

	4
	5
	Your program should echo the names of ALL the input files (even those that can’t be found)
	
	

	5
	5
	Your program should tell the user if the input file can not be found (more than 2 times)
	
	

	6
	5
	Your program should echo all values read from the file to the screen.
	
	

	7
	5
	Each line of the echo should include the value type followed by the value
	
	

	8
	10
	Each value read should be written to the appropriate output file
	
	

	9
	5
	Each value written to an output file should be on a separate line
	
	

	10
	1
	When all of the data in the input file has been read, output a blank line to the screen
	
	

	11
	5
	Remind the user (output to the screen) the name of the output files
	
	

	12
	5
	Your program should print the message “This program has ended normally” to the screen
	
	

	
	50
	Maximum
	
	

	
	
	Code Requirements
	Yes
	No

	13
	1
	Class name is FilePlay.java
	
	

	14
	2
	Your class must have a heading with @author, Lab5, date, section
	
	

	15
	2
	Your program must have explanatory internal comments
	
	

	16
	2
	Your program should attempt to open the file (try to open the file)
	
	

	17
	2
	Your program must separate the data in the input file using the specified delimiters.
	
	

	18
	2
	Your program should catch the appropriate exception if the file can not opened.
	
	

	19
	2
	The name of the output file holding the int values should be integer.txt
	
	

	20
	2
	The name of the output file holding the double values should be double.txt
	
	

	21
	2
	The name of the output file holding the String values should be string.txt
	
	

	22
	1
	Your program should close all of the files used
	
	

	23
	2
	IF your program has internal methods they need java docs headers
	
	

	
	20
	Maximum
	
	

	Style Deductions

	attributes that are not private
	using separate if statements where else if is more appropriate

	meaningless variable names
	embedding method calls in output statements

	attributes that are static
	variables declared and initialized or instantiated in single statement

	poor indentation
	multiple return statements in a method

	curly braces awry
	variables that should be local classified as attributes

	unneeded variables
	using tab key instead of space so lines are too long

	unnecessary else
	unnecessary initializations

	incorrect exception handler
	erroneous comment

	
	lines too long

	
	spelling errors

Other explanatory comments (those relating to numbered items will reference the number)
1. You only got "Are" instead of "Are you happy" due to using StringTokenizer with default delimiters (-2)

2. You got 87.0 and 0.0 instead of 87 and 0 because you didn’t structure your program correctly. You don’t need try/catch blocks if you do it this way. No penalty this time but please structure in box below.

	// while fileScanner.hasNext()

{

 If (fileScanner.hasNextInt())

 { …

 }

 else if (fileScanner.hasNextDouble()

 { …

 }

 else

 { …

 }

 }

3. You got blank spaces due to adjacent delimiters in our input test file which could have been avoided (in output) if you had checked for null string before printing it. No penalty this time.

4. Your program doesn’t work correctly if the user types in the incorrect filename more than once (i.e. if they don’t get it right on the third try).

5. You left too many comments from your stub in the program. Comments useful in the stub to remind you to do something shouldn’t be left behind in the implementation when you’ve done it IF what the code is doing is obvious to anyone READING THE CODE. They make your code HARD TO READ.
6. You are not using @exception properly.

7. You really shouldn’t attempt to open or close all three output files in the same try block. If the exception is thrown, you won’t know which one didn’t work. No penalty this time.

8. If you are unable to open an output file (either because you don’t have write access to an existing file OR because your disk is full) the exception you get is actually a FileNotFoundException. I agree that there could be a better name for the exception but that’s what java gives us. No penalty this time.

9. IF you were able to open the output files for writing, You don’t need a try/catch block every time you try to write to them.
10. Your program has a logic error which causes your program to bomb which is why there is no data in the output files. You do not test for end of file. -5 points
11. You have too much in your try block. Only put in a try block what must be in it! No penalty this time.
12. Your program has extra unnecessary tests being performed every time around the loop to pick up input because you have not structured your program correctly. No penalty this time.
13. Using an integer variable as a loop control device where a Boolean would be more appropriate. -1 point.

14. I don’t know why you pick up the input data as a String and then convert it using parse methods when Scanner has methods to pick up an integer and a double.

15. You have a number of unnecessary variables in your program. You needed them because you didn’t structure your program correctly (see #2 above and #14 again).

16. Using throws IOException in the header of main, where you know what the exception that could be raised is, is not acceptable. That’s for extraordinary circumstances. -1 point

17. If you have java.util.* imported, you do not need and should not have individual java.util classes. No penalty this time.

18. Opening and closing the output files repeatedly may work but it is NOT the way to write this program. Think about it. Why would you do that?

19. Why do you write the String a character at a time instead of writing the String since the write method will take a String as a parameter?

20. Because you have embedded the statements that open the output files in the same try block as the code that picks up the values and writes them to the output file, you are repeatedly re-creating each output file. Each attempt to open an output file should be in its own try block.
21. IF you use FileWriter and the write method you need to call the flush method to get the output into the output file. You may do it after each write OR you may do it once at the end of all writing. In addition, you need to add + “\n” to the write statement if you want each value on a new line. NOTE: explicitly closing the file will also force the output to the output file.
22. If you convert your integers and doubles back to strings and append each new value to the end of the string and don’t print until the end of the input file, you are not conforming to the specifications.
23. Program should not end just because user enters incorrect input file name. It should try again. -5 points

24. No reason to store values in an array in this program. JUST OUTPUT IT! If you want to use an array, make it big enough to hold all possible data And, it’s bad form to declare an array with 0 elements and then keep creating a new array that’s one element bigger as you loop. Having to copy the data is just a waste of time. -5

25. If you are looking for an integer and you don’t find one, it is an InputMismatchException when you are using Scanner NOT a NumberFormatError. It's a NumberFormatError when you are using StringTokenizer which there was not reason to use in this program.

26. You do nothing to recover from a bad output file. Program continued on as if the files could be written to and you failed on the write.

27. A better initialization for the PrintWriter or Scanner objects required for the compiler is null. No points this time.

28. A System.exit(0) is a normal end. Use higher numbers for abnormal ends.

29. Using a try/catch to find the type of token in the input stream is not necessary. Use the hasNext… methods to determine the type of the next token.

30. Why are you converting your input data to a String before outputting it?

