
java.io
Class File

java.lang.Object

All Implemented Interfaces:

Serializable, Comparable<File>

public class File
extends Object
implements Serializable, Comparable<File>

An abstract representation of file and directory pathnames.

User interfaces and operating systems use system-dependent pathname strings to name files and directories. This class presents an abstract, system-independent view of hierarchical pathnames. An abstract pathname has two components:

1. An optional system-dependent prefix string, such as a disk-drive specifier, "/" for the UNIX root directory, or "\\\\" for a Microsoft Windows UNC pathname, and

2. A sequence of zero or more string names.

Each name in an abstract pathname except for the last denotes a directory; the last name may denote either a directory or a file. The empty abstract pathname has no prefix and an empty name sequence.

The conversion of a pathname string to or from an abstract pathname is inherently system-dependent. When an abstract pathname is converted into a pathname string, each name is separated from the next by a single copy of the default separator character. The default name-separator character is defined by the system property file.separator, and is made available in the public static fields separator and separatorChar of this class. When a pathname string is converted into an abstract pathname, the names within it may be separated by the default name-separator character or by any other name-separator character that is supported by the underlying system.

A pathname, whether abstract or in string form, may be either absolute or relative. An absolute pathname is complete in that no other information is required in order to locate the file that it denotes. A relative pathname, in contrast, must be interpreted in terms of information taken from some other pathname. By default the classes in the java.io package always resolve relative pathnames against the current user directory. This directory is named by the system property user.dir, and is typically the directory in which the Java virtual machine was invoked.

The prefix concept is used to handle root directories on UNIX platforms, and drive specifiers, root directories and UNC pathnames on Microsoft Windows platforms, as follows:

· For UNIX platforms, the prefix of an absolute pathname is always "/". Relative pathnames have no prefix. The abstract pathname denoting the root directory has the prefix "/" and an empty name sequence.

· For Microsoft Windows platforms, the prefix of a pathname that contains a drive specifier consists of the drive letter followed by ":" and possibly followed by "\\" if the pathname is absolute. The prefix of a UNC pathname is "\\\\"; the hostname and the share name are the first two names in the name sequence. A relative pathname that does not specify a drive has no prefix.

Instances of the File class are immutable; that is, once created, the abstract pathname represented by a File object will never change.

Since:

JDK1.0

See Also:

Serialized Form

	Field Summary

	static String
	pathSeparator
 The system-dependent path-separator character, represented as a string for convenience.

	static char
	pathSeparatorChar
 The system-dependent path-separator character.

	static String
	separator
 The system-dependent default name-separator character, represented as a string for convenience.

	static char
	separatorChar
 The system-dependent default name-separator character.

	Constructor Summary

	File(File parent, String child)
 Creates a new File instance from a parent abstract pathname and a child pathname string.
	

	File(String pathname)
 Creates a new File instance by converting the given pathname string into an abstract pathname.
	

	File(String parent, String child)
 Creates a new File instance from a parent pathname string and a child pathname string.
	

	File(URI uri)
 Creates a new File instance by converting the given file: URI into an abstract pathname.
	

	Method Summary

	 boolean
	canRead()
 Tests whether the application can read the file denoted by this abstract pathname.

	 boolean
	canWrite()
 Tests whether the application can modify the file denoted by this abstract pathname.

	 int
	compareTo(File pathname)
 Compares two abstract pathnames lexicographically.

	 boolean
	createNewFile()
 Atomically creates a new, empty file named by this abstract pathname if and only if a file with this name does not yet exist.

	static File
	createTempFile(String prefix, String suffix)
 Creates an empty file in the default temporary-file directory, using the given prefix and suffix to generate its name.

	static File
	createTempFile(String prefix, String suffix, File directory)
 Creates a new empty file in the specified directory, using the given prefix and suffix strings to generate its name.

	 boolean
	delete()
 Deletes the file or directory denoted by this abstract pathname.

	 void
	deleteOnExit()
 Requests that the file or directory denoted by this abstract pathname be deleted when the virtual machine terminates.

	 boolean
	equals(Object obj)
 Tests this abstract pathname for equality with the given object.

	 boolean
	exists()
 Tests whether the file or directory denoted by this abstract pathname exists.

	 File
	getAbsoluteFile()
 Returns the absolute form of this abstract pathname.

	 String
	getAbsolutePath()
 Returns the absolute pathname string of this abstract pathname.

	 File
	getCanonicalFile()
 Returns the canonical form of this abstract pathname.

	 String
	getCanonicalPath()
 Returns the canonical pathname string of this abstract pathname.

	 String
	getName()
 Returns the name of the file or directory denoted by this abstract pathname.

	 String
	getParent()
 Returns the pathname string of this abstract pathname's parent, or null if this pathname does not name a parent directory.

	 File
	getParentFile()
 Returns the abstract pathname of this abstract pathname's parent, or null if this pathname does not name a parent directory.

	 String
	getPath()
 Converts this abstract pathname into a pathname string.

	 int
	hashCode()
 Computes a hash code for this abstract pathname.

	 boolean
	isAbsolute()
 Tests whether this abstract pathname is absolute.

	 boolean
	isDirectory()
 Tests whether the file denoted by this abstract pathname is a directory.

	 boolean
	isFile()
 Tests whether the file denoted by this abstract pathname is a normal file.

	 boolean
	isHidden()
 Tests whether the file named by this abstract pathname is a hidden file.

	 long
	lastModified()
 Returns the time that the file denoted by this abstract pathname was last modified.

	 long
	length()
 Returns the length of the file denoted by this abstract pathname.

	 String[]
	list()
 Returns an array of strings naming the files and directories in the directory denoted by this abstract pathname.

	 String[]
	list(FilenameFilter filter)
 Returns an array of strings naming the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter.

	 File[]
	listFiles()
 Returns an array of abstract pathnames denoting the files in the directory denoted by this abstract pathname.

	 File[]
	listFiles(FileFilter filter)
 Returns an array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter.

	 File[]
	listFiles(FilenameFilter filter)
 Returns an array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter.

	static File[]
	listRoots()
 List the available filesystem roots.

	 boolean
	mkdir()
 Creates the directory named by this abstract pathname.

	 boolean
	mkdirs()
 Creates the directory named by this abstract pathname, including any necessary but nonexistent parent directories.

	 boolean
	renameTo(File dest)
 Renames the file denoted by this abstract pathname.

	 boolean
	setLastModified(long time)
 Sets the last-modified time of the file or directory named by this abstract pathname.

	 boolean
	setReadOnly()
 Marks the file or directory named by this abstract pathname so that only read operations are allowed.

	 String
	toString()
 Returns the pathname string of this abstract pathname.

	 URI
	toURI()
 Constructs a file: URI that represents this abstract pathname.

	 URL
	toURL()
 Converts this abstract pathname into a file: URL.

	Methods inherited from class java.lang.Object

	clone, finalize, getClass, notify, notifyAll, wait, wait, wait

	Field Detail

separatorChar

public static final char separatorChar
The system-dependent default name-separator character. This field is initialized to contain the first character of the value of the system property file.separator. On UNIX systems the value of this field is '/'; on Microsoft Windows systems it is '\\'.

See Also:

System.getProperty(java.lang.String)

separator

public static final String separator
The system-dependent default name-separator character, represented as a string for convenience. This string contains a single character, namely separatorChar.

pathSeparatorChar

public static final char pathSeparatorChar
The system-dependent path-separator character. This field is initialized to contain the first character of the value of the system property path.separator. This character is used to separate filenames in a sequence of files given as a path list. On UNIX systems, this character is ':'; on Microsoft Windows systems it is ';'.

See Also:

System.getProperty(java.lang.String)

pathSeparator

public static final String pathSeparator
The system-dependent path-separator character, represented as a string for convenience. This string contains a single character, namely pathSeparatorChar.

	Constructor Detail

File

public File(String pathname)

Creates a new File instance by converting the given pathname string into an abstract pathname. If the given string is the empty string, then the result is the empty abstract pathname.

Parameters:

pathname - A pathname string

Throws:

NullPointerException - If the pathname argument is null

File

public File(String parent,

 String child)

Creates a new File instance from a parent pathname string and a child pathname string.

If parent is null then the new File instance is created as if by invoking the single-argument File constructor on the given child pathname string.

Otherwise the parent pathname string is taken to denote a directory, and the child pathname string is taken to denote either a directory or a file. If the child pathname string is absolute then it is converted into a relative pathname in a system-dependent way. If parent is the empty string then the new File instance is created by converting child into an abstract pathname and resolving the result against a system-dependent default directory. Otherwise each pathname string is converted into an abstract pathname and the child abstract pathname is resolved against the parent.

Parameters:

parent - The parent pathname string

child - The child pathname string

Throws:

NullPointerException - If child is null

File

public File(File parent,

 String child)

Creates a new File instance from a parent abstract pathname and a child pathname string.

If parent is null then the new File instance is created as if by invoking the single-argument File constructor on the given child pathname string.

Otherwise the parent abstract pathname is taken to denote a directory, and the child pathname string is taken to denote either a directory or a file. If the child pathname string is absolute then it is converted into a relative pathname in a system-dependent way. If parent is the empty abstract pathname then the new File instance is created by converting child into an abstract pathname and resolving the result against a system-dependent default directory. Otherwise each pathname string is converted into an abstract pathname and the child abstract pathname is resolved against the parent.

Parameters:

parent - The parent abstract pathname

child - The child pathname string

Throws:

NullPointerException - If child is null

File

public File(URI uri)

Creates a new File instance by converting the given file: URI into an abstract pathname.

The exact form of a file: URI is system-dependent, hence the transformation performed by this constructor is also system-dependent.

For a given abstract pathname f it is guaranteed that

new File(f.toURI()).equals(f.getAbsoluteFile())
so long as the original abstract pathname, the URI, and the new abstract pathname are all created in (possibly different invocations of) the same Java virtual machine. This relationship typically does not hold, however, when a file: URI that is created in a virtual machine on one operating system is converted into an abstract pathname in a virtual machine on a different operating system.

Parameters:

uri - An absolute, hierarchical URI with a scheme equal to "file", a non-empty path component, and undefined authority, query, and fragment components

Throws:

NullPointerException - If uri is null

IllegalArgumentException - If the preconditions on the parameter do not hold

Since:

1.4

See Also:

toURI(), URI
	Method Detail

getName

public String getName()

Returns the name of the file or directory denoted by this abstract pathname. This is just the last name in the pathname's name sequence. If the pathname's name sequence is empty, then the empty string is returned.

Returns:

The name of the file or directory denoted by this abstract pathname, or the empty string if this pathname's name sequence is empty

getParent

public String getParent()

Returns the pathname string of this abstract pathname's parent, or null if this pathname does not name a parent directory.

The parent of an abstract pathname consists of the pathname's prefix, if any, and each name in the pathname's name sequence except for the last. If the name sequence is empty then the pathname does not name a parent directory.

Returns:

The pathname string of the parent directory named by this abstract pathname, or null if this pathname does not name a parent

getParentFile

public File getParentFile()

Returns the abstract pathname of this abstract pathname's parent, or null if this pathname does not name a parent directory.

The parent of an abstract pathname consists of the pathname's prefix, if any, and each name in the pathname's name sequence except for the last. If the name sequence is empty then the pathname does not name a parent directory.

Returns:

The abstract pathname of the parent directory named by this abstract pathname, or null if this pathname does not name a parent

Since:

1.2

getPath

public String getPath()

Converts this abstract pathname into a pathname string. The resulting string uses the default name-separator character to separate the names in the name sequence.

Returns:

The string form of this abstract pathname

isAbsolute

public boolean isAbsolute()

Tests whether this abstract pathname is absolute. The definition of absolute pathname is system dependent. On UNIX systems, a pathname is absolute if its prefix is "/". On Microsoft Windows systems, a pathname is absolute if its prefix is a drive specifier followed by "\\", or if its prefix is "\\\\".

Returns:

true if this abstract pathname is absolute, false otherwise

getAbsolutePath

public String getAbsolutePath()

Returns the absolute pathname string of this abstract pathname.

If this abstract pathname is already absolute, then the pathname string is simply returned as if by the getPath() method. If this abstract pathname is the empty abstract pathname then the pathname string of the current user directory, which is named by the system property user.dir, is returned. Otherwise this pathname is resolved in a system-dependent way. On UNIX systems, a relative pathname is made absolute by resolving it against the current user directory. On Microsoft Windows systems, a relative pathname is made absolute by resolving it against the current directory of the drive named by the pathname, if any; if not, it is resolved against the current user directory.

Returns:

The absolute pathname string denoting the same file or directory as this abstract pathname

Throws:

SecurityException - If a required system property value cannot be accessed.

See Also:

isAbsolute()

getAbsoluteFile

public File getAbsoluteFile()

Returns the absolute form of this abstract pathname. Equivalent to new File(this.getAbsolutePath()()).

Returns:

The absolute abstract pathname denoting the same file or directory as this abstract pathname

Throws:

SecurityException - If a required system property value cannot be accessed.

Since:

1.2

getCanonicalPath

public String getCanonicalPath()

 throws IOException
Returns the canonical pathname string of this abstract pathname.

A canonical pathname is both absolute and unique. The precise definition of canonical form is system-dependent. This method first converts this pathname to absolute form if necessary, as if by invoking the getAbsolutePath() method, and then maps it to its unique form in a system-dependent way. This typically involves removing redundant names such as "." and ".." from the pathname, resolving symbolic links (on UNIX platforms), and converting drive letters to a standard case (on Microsoft Windows platforms).

Every pathname that denotes an existing file or directory has a unique canonical form. Every pathname that denotes a nonexistent file or directory also has a unique canonical form. The canonical form of the pathname of a nonexistent file or directory may be different from the canonical form of the same pathname after the file or directory is created. Similarly, the canonical form of the pathname of an existing file or directory may be different from the canonical form of the same pathname after the file or directory is deleted.

Returns:

The canonical pathname string denoting the same file or directory as this abstract pathname

Throws:

IOException - If an I/O error occurs, which is possible because the construction of the canonical pathname may require filesystem queries

SecurityException - If a required system property value cannot be accessed, or if a security manager exists and its SecurityManager.checkRead(java.io.FileDescriptor) method denies read access to the file

Since:

JDK1.1

getCanonicalFile

public File getCanonicalFile()

 throws IOException
Returns the canonical form of this abstract pathname. Equivalent to new File(this.getCanonicalPath()()).

Returns:

The canonical pathname string denoting the same file or directory as this abstract pathname

Throws:

IOException - If an I/O error occurs, which is possible because the construction of the canonical pathname may require filesystem queries

SecurityException - If a required system property value cannot be accessed, or if a security manager exists and its SecurityManager.checkRead(java.io.FileDescriptor) method denies read access to the file

Since:

1.2

toURL

public URL toURL()

 throws MalformedURLException
Converts this abstract pathname into a file: URL. The exact form of the URL is system-dependent. If it can be determined that the file denoted by this abstract pathname is a directory, then the resulting URL will end with a slash.

Usage note: This method does not automatically escape characters that are illegal in URLs. It is recommended that new code convert an abstract pathname into a URL by first converting it into a URI, via the toURI method, and then converting the URI into a URL via the URI.toURL method.

Returns:

A URL object representing the equivalent file URL

Throws:

MalformedURLException - If the path cannot be parsed as a URL

Since:

1.2

See Also:

toURI(), URI, URI.toURL(), URL

toURI

public URI toURI()

Constructs a file: URI that represents this abstract pathname.

The exact form of the URI is system-dependent. If it can be determined that the file denoted by this abstract pathname is a directory, then the resulting URI will end with a slash.

For a given abstract pathname f, it is guaranteed that

new File(f.toURI()).equals(f.getAbsoluteFile())
so long as the original abstract pathname, the URI, and the new abstract pathname are all created in (possibly different invocations of) the same Java virtual machine. Due to the system-dependent nature of abstract pathnames, however, this relationship typically does not hold when a file: URI that is created in a virtual machine on one operating system is converted into an abstract pathname in a virtual machine on a different operating system.

Returns:

An absolute, hierarchical URI with a scheme equal to "file", a path representing this abstract pathname, and undefined authority, query, and fragment components

Since:

1.4

See Also:

File(java.net.URI), URI, URI.toURL()

canRead

public boolean canRead()

Tests whether the application can read the file denoted by this abstract pathname.

Returns:

true if and only if the file specified by this abstract pathname exists and can be read by the application; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

canWrite

public boolean canWrite()

Tests whether the application can modify the file denoted by this abstract pathname.

Returns:

true if and only if the file system actually contains a file denoted by this abstract pathname and the application is allowed to write to the file; false otherwise.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method denies write access to the file

exists

public boolean exists()

Tests whether the file or directory denoted by this abstract pathname exists.

Returns:

true if and only if the file or directory denoted by this abstract pathname exists; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file or directory

isDirectory

public boolean isDirectory()

Tests whether the file denoted by this abstract pathname is a directory.

Returns:

true if and only if the file denoted by this abstract pathname exists and is a directory; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

isFile

public boolean isFile()

Tests whether the file denoted by this abstract pathname is a normal file. A file is normal if it is not a directory and, in addition, satisfies other system-dependent criteria. Any non-directory file created by a Java application is guaranteed to be a normal file.

Returns:

true if and only if the file denoted by this abstract pathname exists and is a normal file; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

isHidden

public boolean isHidden()

Tests whether the file named by this abstract pathname is a hidden file. The exact definition of hidden is system-dependent. On UNIX systems, a file is considered to be hidden if its name begins with a period character ('.'). On Microsoft Windows systems, a file is considered to be hidden if it has been marked as such in the filesystem.

Returns:

true if and only if the file denoted by this abstract pathname is hidden according to the conventions of the underlying platform

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

Since:

1.2

lastModified

public long lastModified()

Returns the time that the file denoted by this abstract pathname was last modified.

Returns:

A long value representing the time the file was last modified, measured in milliseconds since the epoch (00:00:00 GMT, January 1, 1970), or 0L if the file does not exist or if an I/O error occurs

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

length

public long length()

Returns the length of the file denoted by this abstract pathname. The return value is unspecified if this pathname denotes a directory.

Returns:

The length, in bytes, of the file denoted by this abstract pathname, or 0L if the file does not exist

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the file

createNewFile

public boolean createNewFile()

 throws IOException
Atomically creates a new, empty file named by this abstract pathname if and only if a file with this name does not yet exist. The check for the existence of the file and the creation of the file if it does not exist are a single operation that is atomic with respect to all other filesystem activities that might affect the file.

Note: this method should not be used for file-locking, as the resulting protocol cannot be made to work reliably. The FileLock facility should be used instead.

Returns:

true if the named file does not exist and was successfully created; false if the named file already exists

Throws:

IOException - If an I/O error occurred

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method denies write access to the file

Since:

1.2

delete

public boolean delete()

Deletes the file or directory denoted by this abstract pathname. If this pathname denotes a directory, then the directory must be empty in order to be deleted.

Returns:

true if and only if the file or directory is successfully deleted; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkDelete(java.lang.String) method denies delete access to the file

deleteOnExit

public void deleteOnExit()

Requests that the file or directory denoted by this abstract pathname be deleted when the virtual machine terminates. Deletion will be attempted only for normal termination of the virtual machine, as defined by the Java Language Specification.

Once deletion has been requested, it is not possible to cancel the request. This method should therefore be used with care.

Note: this method should not be used for file-locking, as the resulting protocol cannot be made to work reliably. The FileLock facility should be used instead.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkDelete(java.lang.String) method denies delete access to the file

Since:

1.2

See Also:

delete()

list

public String[] list()

Returns an array of strings naming the files and directories in the directory denoted by this abstract pathname.

If this abstract pathname does not denote a directory, then this method returns null. Otherwise an array of strings is returned, one for each file or directory in the directory. Names denoting the directory itself and the directory's parent directory are not included in the result. Each string is a file name rather than a complete path.

There is no guarantee that the name strings in the resulting array will appear in any specific order; they are not, in particular, guaranteed to appear in alphabetical order.

Returns:

An array of strings naming the files and directories in the directory denoted by this abstract pathname. The array will be empty if the directory is empty. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the directory

list

public String[] list(FilenameFilter filter)

Returns an array of strings naming the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter. The behavior of this method is the same as that of the list() method, except that the strings in the returned array must satisfy the filter. If the given filter is null then all names are accepted. Otherwise, a name satisfies the filter if and only if the value true results when the FilenameFilter.accept(java.io.File, java.lang.String) method of the filter is invoked on this abstract pathname and the name of a file or directory in the directory that it denotes.

Parameters:

filter - A filename filter

Returns:

An array of strings naming the files and directories in the directory denoted by this abstract pathname that were accepted by the given filter. The array will be empty if the directory is empty or if no names were accepted by the filter. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the directory

listFiles

public File[] listFiles()

Returns an array of abstract pathnames denoting the files in the directory denoted by this abstract pathname.

If this abstract pathname does not denote a directory, then this method returns null. Otherwise an array of File objects is returned, one for each file or directory in the directory. Pathnames denoting the directory itself and the directory's parent directory are not included in the result. Each resulting abstract pathname is constructed from this abstract pathname using the File(File, String) constructor. Therefore if this pathname is absolute then each resulting pathname is absolute; if this pathname is relative then each resulting pathname will be relative to the same directory.

There is no guarantee that the name strings in the resulting array will appear in any specific order; they are not, in particular, guaranteed to appear in alphabetical order.

Returns:

An array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname. The array will be empty if the directory is empty. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the directory

Since:

1.2

listFiles

public File[] listFiles(FilenameFilter filter)

Returns an array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter. The behavior of this method is the same as that of the listFiles() method, except that the pathnames in the returned array must satisfy the filter. If the given filter is null then all pathnames are accepted. Otherwise, a pathname satisfies the filter if and only if the value true results when the FilenameFilter.accept(java.io.File, java.lang.String) method of the filter is invoked on this abstract pathname and the name of a file or directory in the directory that it denotes.

Parameters:

filter - A filename filter

Returns:

An array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname. The array will be empty if the directory is empty. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the directory

Since:

1.2

listFiles

public File[] listFiles(FileFilter filter)

Returns an array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname that satisfy the specified filter. The behavior of this method is the same as that of the listFiles() method, except that the pathnames in the returned array must satisfy the filter. If the given filter is null then all pathnames are accepted. Otherwise, a pathname satisfies the filter if and only if the value true results when the FileFilter.accept(java.io.File) method of the filter is invoked on the pathname.

Parameters:

filter - A file filter

Returns:

An array of abstract pathnames denoting the files and directories in the directory denoted by this abstract pathname. The array will be empty if the directory is empty. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to the directory

Since:

1.2

mkdir

public boolean mkdir()

Creates the directory named by this abstract pathname.

Returns:

true if and only if the directory was created; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method does not permit the named directory to be created

mkdirs

public boolean mkdirs()

Creates the directory named by this abstract pathname, including any necessary but nonexistent parent directories. Note that if this operation fails it may have succeeded in creating some of the necessary parent directories.

Returns:

true if and only if the directory was created, along with all necessary parent directories; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkRead(java.lang.String) method does not permit verification of the existence of the named directory and all necessary parent directories; or if the SecurityManager.checkWrite(java.lang.String) method does not permit the named directory and all necessary parent directories to be created

renameTo

public boolean renameTo(File dest)

Renames the file denoted by this abstract pathname.

Many aspects of the behavior of this method are inherently platform-dependent: The rename operation might not be able to move a file from one filesystem to another, it might not be atomic, and it might not succeed if a file with the destination abstract pathname already exists. The return value should always be checked to make sure that the rename operation was successful.

Parameters:

dest - The new abstract pathname for the named file

Returns:

true if and only if the renaming succeeded; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method denies write access to either the old or new pathnames

NullPointerException - If parameter dest is null

setLastModified

public boolean setLastModified(long time)

Sets the last-modified time of the file or directory named by this abstract pathname.

All platforms support file-modification times to the nearest second, but some provide more precision. The argument will be truncated to fit the supported precision. If the operation succeeds and no intervening operations on the file take place, then the next invocation of the lastModified() method will return the (possibly truncated) time argument that was passed to this method.

Parameters:

time - The new last-modified time, measured in milliseconds since the epoch (00:00:00 GMT, January 1, 1970)

Returns:

true if and only if the operation succeeded; false otherwise

Throws:

IllegalArgumentException - If the argument is negative

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method denies write access to the named file

Since:

1.2

setReadOnly

public boolean setReadOnly()

Marks the file or directory named by this abstract pathname so that only read operations are allowed. After invoking this method the file or directory is guaranteed not to change until it is either deleted or marked to allow write access. Whether or not a read-only file or directory may be deleted depends upon the underlying system.

Returns:

true if and only if the operation succeeded; false otherwise

Throws:

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method denies write access to the named file

Since:

1.2

listRoots

public static File[] listRoots()

List the available filesystem roots.

A particular Java platform may support zero or more hierarchically-organized file systems. Each file system has a root directory from which all other files in that file system can be reached. Windows platforms, for example, have a root directory for each active drive; UNIX platforms have a single root directory, namely "/". The set of available filesystem roots is affected by various system-level operations such as the insertion or ejection of removable media and the disconnecting or unmounting of physical or virtual disk drives.

This method returns an array of File objects that denote the root directories of the available filesystem roots. It is guaranteed that the canonical pathname of any file physically present on the local machine will begin with one of the roots returned by this method.

The canonical pathname of a file that resides on some other machine and is accessed via a remote-filesystem protocol such as SMB or NFS may or may not begin with one of the roots returned by this method. If the pathname of a remote file is syntactically indistinguishable from the pathname of a local file then it will begin with one of the roots returned by this method. Thus, for example, File objects denoting the root directories of the mapped network drives of a Windows platform will be returned by this method, while File objects containing UNC pathnames will not be returned by this method.

Unlike most methods in this class, this method does not throw security exceptions. If a security manager exists and its SecurityManager.checkRead(java.lang.String) method denies read access to a particular root directory, then that directory will not appear in the result.

Returns:

An array of File objects denoting the available filesystem roots, or null if the set of roots could not be determined. The array will be empty if there are no filesystem roots.

Since:

1.2

createTempFile

public static File createTempFile(String prefix,

 String suffix,

 File directory)

 throws IOException
Creates a new empty file in the specified directory, using the given prefix and suffix strings to generate its name. If this method returns successfully then it is guaranteed that:

1. The file denoted by the returned abstract pathname did not exist before this method was invoked, and

2. Neither this method nor any of its variants will return the same abstract pathname again in the current invocation of the virtual machine.

This method provides only part of a temporary-file facility. To arrange for a file created by this method to be deleted automatically, use the deleteOnExit() method.

The prefix argument must be at least three characters long. It is recommended that the prefix be a short, meaningful string such as "hjb" or "mail". The suffix argument may be null, in which case the suffix ".tmp" will be used.

To create the new file, the prefix and the suffix may first be adjusted to fit the limitations of the underlying platform. If the prefix is too long then it will be truncated, but its first three characters will always be preserved. If the suffix is too long then it too will be truncated, but if it begins with a period character ('.') then the period and the first three characters following it will always be preserved. Once these adjustments have been made the name of the new file will be generated by concatenating the prefix, five or more internally-generated characters, and the suffix.

If the directory argument is null then the system-dependent default temporary-file directory will be used. The default temporary-file directory is specified by the system property java.io.tmpdir. On UNIX systems the default value of this property is typically "/tmp" or "/var/tmp"; on Microsoft Windows systems it is typically "C:\\WINNT\\TEMP". A different value may be given to this system property when the Java virtual machine is invoked, but programmatic changes to this property are not guaranteed to have any effect upon the temporary directory used by this method.

Parameters:

prefix - The prefix string to be used in generating the file's name; must be at least three characters long

suffix - The suffix string to be used in generating the file's name; may be null, in which case the suffix ".tmp" will be used

directory - The directory in which the file is to be created, or null if the default temporary-file directory is to be used

Returns:

An abstract pathname denoting a newly-created empty file

Throws:

IllegalArgumentException - If the prefix argument contains fewer than three characters

IOException - If a file could not be created

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method does not allow a file to be created

Since:

1.2

createTempFile

public static File createTempFile(String prefix,

 String suffix)

 throws IOException
Creates an empty file in the default temporary-file directory, using the given prefix and suffix to generate its name. Invoking this method is equivalent to invoking createTempFile(prefix, suffix, null).

Parameters:

prefix - The prefix string to be used in generating the file's name; must be at least three characters long

suffix - The suffix string to be used in generating the file's name; may be null, in which case the suffix ".tmp" will be used

Returns:

An abstract pathname denoting a newly-created empty file

Throws:

IllegalArgumentException - If the prefix argument contains fewer than three characters

IOException - If a file could not be created

SecurityException - If a security manager exists and its SecurityManager.checkWrite(java.lang.String) method does not allow a file to be created

Since:

1.2

compareTo

public int compareTo(File pathname)

Compares two abstract pathnames lexicographically. The ordering defined by this method depends upon the underlying system. On UNIX systems, alphabetic case is significant in comparing pathnames; on Microsoft Windows systems it is not.

Specified by:

compareTo in interface Comparable<File>
Parameters:

pathname - The abstract pathname to be compared to this abstract pathname

Returns:

Zero if the argument is equal to this abstract pathname, a value less than zero if this abstract pathname is lexicographically less than the argument, or a value greater than zero if this abstract pathname is lexicographically greater than the argument

Since:

1.2

equals

public boolean equals(Object obj)

Tests this abstract pathname for equality with the given object. Returns true if and only if the argument is not null and is an abstract pathname that denotes the same file or directory as this abstract pathname. Whether or not two abstract pathnames are equal depends upon the underlying system. On UNIX systems, alphabetic case is significant in comparing pathnames; on Microsoft Windows systems it is not.

Overrides:

equals in class Object
Parameters:

obj - The object to be compared with this abstract pathname

Returns:

true if and only if the objects are the same; false otherwise

See Also:

Object.hashCode(), Hashtable

hashCode

public int hashCode()

Computes a hash code for this abstract pathname. Because equality of abstract pathnames is inherently system-dependent, so is the computation of their hash codes. On UNIX systems, the hash code of an abstract pathname is equal to the exclusive or of the hash code of its pathname string and the decimal value 1234321. On Microsoft Windows systems, the hash code is equal to the exclusive or of the hash code of its pathname string converted to lower case and the decimal value 1234321.

Overrides:

hashCode in class Object
Returns:

A hash code for this abstract pathname

See Also:

Object.equals(java.lang.Object), Hashtable

toString

public String toString()

Returns the pathname string of this abstract pathname. This is just the string returned by the getPath() method.

Overrides:

toString in class Object
Returns:

The string form of this abstract pathname

	Overview

	Package

	 Class

	Use

	Tree

	Deprecated

	Index

	Help

	
	JavaTM 2 Platform
Standard Ed. 5.0

	 PREV CLASS NEXT CLASS
	FRAMES NO FRAMES [image: image1.png]

All Classes
	

	SUMMARY: NESTED | FIELD | CONSTR | METHOD
	DETAIL: FIELD | CONSTR | METHOD
	

Submit a bug or feature
For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.

Copyright 2004 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy. [image: image2.png]

