Chapter 11 Lab

Inheritance

Objectives

* Be able to derive a class from an existing class

* Be able to define a class hierarchy in which methods are overridden and fields
are hidden

* Be able to use derived-class objects

e Implement a copy constructor

Introduction

In this lab, you will be creating new classes that are derived from a class called
BankAccount. A checking account is @ bank account and a savings account is a bank
account as well. This sets up a relationship called inheritance, where BankAccount is
the superclass and CheckingAccount and SavingsAccount are subclasses.

This relationship allows CheckingAccount to inherit attributes from BankAccount
(like owner, balance, and accountNumber, but it can have new attributes that are spe-
cific to a checking account, like a fee for clearing a check. It also allows
CheckingAccount to inherit methods from BankAccount, like deposit, that are univer-
sal for all bank accounts.

You will write a withdraw method in CheckingAccount that overrides the withdraw
method in BankAccount, in order to do something slightly different than the original
withdraw method.

You will use an instance variable called accountNumber in SavingsAccount to hide
the accountNumber variable inherited from BankAccount.

98 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

The UML diagram for the inheritance relationship is as follows:

BankAccount

-balance:double
-owner:String

-accountNumber:String
#numberOfAccounts:int

+BankAccount():

+getBalance():double
+getOwner():String

+BankAccount(name:String,amount:double):
+BankAccount(oldAccount:BankAccount,amount:double):
+deposit(amount:double):void
+withdraw(amount:double):boolean

+getAccountNumber():String
+setBalance(amount:double):void
+setAccountNumber(newAccountNumber:String):void

Zlk

CheckingAccount

SavingsAccount

-FEE:double

+CheckingAccount(name:String,
amont:double):

+withdraw (amount:double):boolean

-rate:double
-savingsNumber:int
-accountNumber:String

+SavingsAccount(name:String,amount:double):

+SavingsAccount(oldAccount: SavingsAccount,
amont:double):

+postinterest():void

+getAccountNumber():String

Chapter 11 Lab Inheritance 99

Task #1 Extending BankAccount

1. Copy the files AccountDriverjava (code listing 11.1) and BankAccount.java
(code listing 11.2) from www.aw.com/cssupport or as directed by your instruc-
tor. BankAccount.java is complete and will not need to be modified.

2. Create a new class called CheckingAccount that extends BankA ccount.

It should contain a static constant FEE that represents the cost of clearing one
check. Set it equal to 15 cents.

4. Write a constructor that takes a name and an initial amount as parameters. It
should call the constructor for the superclass. It should initialize
accountNumber to be the current value in accountNumber concatenated
with —10 (All checking accounts at this bank are identified by the extension
—10). There can be only one checking account for each account number.
Remember since accountNumber is a private member in BankAccount, it
must be changed through a mutator method.

5. Write a new instance method, withdraw, that overrides the withdraw method in
the superclass. This method should take the amount to withdraw, add to it the
fee for check clearing, and call the withdraw method from the superclass.
Remember that to override the method, it must have the same method heading.
Notice that the withdraw method from the superclass returns true or false
depending if it was able to complete the withdrawal or not. The method that
overrides it must also return the same true or false that was returned from the
call to the withdraw method from the superclass.

6. Compile and debug this class.

100

Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Task #2 Creating a Second Subclass

10.

11.

Create a new class called SavingsAccount that extends BankA ccount.

It should contain an instance variable called rate that represents the annual
interest rate. Set it equal to 2.5%.

It should also have an instance variable called savingsNumber, initialized to
0. In this bank, you have one account number, but can have several savings
accounts with that same number. Each individual savings account is identified
by the number following a dash. For example, 100001-0 is the first savings
account you open, 100001-1 would be another savings account that is still part
of your same account. This is so that you can keep some funds separate from
the others, like a Christmas club account.

An instance variable called accountNumber that will hide the
accountNumber from the superclass, should also be in this class.

Write a constructor that takes a name and an initial balance as parameters and
calls the constructor for the superclass. It should initialize accountNumber
to be the current value in the superclass accountNumber (the hidden
instance variable) concatenated with a hyphen and then the savingsNumber.

Write a method called postInterest that has no parameters and returns no
value. This method will calculate one month’s worth of interest on the balance
and deposit it into the account.

Write a method that overrides the getAccountNumber method in the super-
class.

Write a copy constructor that creates another savings account for the same per-
son. It should take the original savings account and an initial balance as para-
meters. It should call the copy constructor of the superclass, assign the
savingsNumber to be one more than the savingsNumber of the original
savings account. It should assign the accountNumber to be the
accountNumber of the superclass concatenated with the hypen and the
savingsNumber of the new account.

Compile and debug this class.

Use the AccountDriver class to test out your classes. If you named and created
your classes and methods correctly, it should not have any difficulties. If you
have errors, do not edit the AccountDriver class. You must make your classes
work with this program.

Running the program should give the following output:

Account Number 100001-10 belonging to Benjamin Franklin
Initial balance = $1000.00

After deposit of $500.00, balance = $1500.00
After withdrawal of $1000.00, balance = $499.85

Chapter 11 Lab Inheritance

101

Account Number 100002-0 belonging to William Shakespeare
Initial balance = $400.00

After deposit of $500.00, balance = $900.00

Insuffient funds to withdraw $1000.00, balance = $900.00
After monthly interest has been posted, balance = $901.88

Account Number 100002-1 belonging to William Shakespeare
Initial balance = $5.00

After deposit of $500.00, balance = $505.00
Insuffient funds to withdraw $1000.00, Dbalance = $505.00

Account Number 100003-10 belonging to Isaac Newton

102 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Code Listing 11.1 (AccountDriver.java)

import java.text.*; // to use Decimal Format
/**Demonstrates the BankAccount and derived classes*/
public class AccountDriver
{
public static void main(String[] args)
{
double put _in = 500;
double take out = 1000;

DecimalFormat myFormat;
String money;

String money_ inj;

String money out;

boolean completed;

// to get 2 decimals every time

myFormat = new DecimalFormat("#.00");

//to test the Checking Account class
CheckingAccount myCheckingAccount =
new CheckingAccount ("Ben Franklin", 1000);
System.out.println ("Account Number "
+ myCheckingAccount.getAccountNumber() +
" belonging to " + myCheckingAccount.getOwner());
money = myFormat.format(
myCheckingAccount.getBalance());
System.out.println ("Initial balance = $" + money);
myCheckingAccount.deposit (put_in);
money_in = myFormat.format(put_in);
money = myFormat.format(
myCheckingAccount.getBalance());
System.out.println ("After deposit of $" + money in

+ ", Dbalance = $" + money);

completed myCheckingAccount.withdraw(take out);

money out = myFormat.format(take out);

Code Listing 11.1 continued on next page.

Chapter 11 Lab Inheritance 103

money = myFormat.format(
myCheckingAccount.getBalance());
if (completed)

{
System.out.println ("After withdrawal of $" +
money_ out + ", balance = $" + money);
}
else
{
System.out.println ("Insuffient funds to " +
" withdraw $" + money out +
", balance = $" + money);
}

System.out.println();

//to test the savings account class
SavingsAccount yourAccount =

new SavingsAccount ("William Shakespeare", 400);
System.out.println ("Account Number "

+ yourAccount.getAccountNumber () +

" belonging to " + yourAccount.getOwner());
money = myFormat.format(yourAccount.getBalance());
System.out.println ("Initial balance = $" + money);

yourAccount.deposit (put_in);

money_in = myFormat.format(put_in);

money = myFormat.format(yourAccount.getBalance());
System.out.println ("After deposit of $" + money in

+ ", balance = $" + money);

completed = yourAccount.withdraw(take out);

money_ out myFormat.format (take_out);
money = myFormat.format(yourAccount.getBalance());

if (completed)

{
System.out.println ("After withdrawal of $" +
money out + ", balance = $" + money);
}
else
{

Code Listing 11.1 continued on next page

104 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

System.out.println ("Insuffient funds to " +
"withdraw $" + money out +
", balance = $" + money);
}
yourAccount.postInterest();
money = myFormat.format(yourAccount.getBalance());
System.out.println ("After monthly interest " +
"has been posted," + "balance = $" + money);

System.out.println();

// to test the copy constructor of the savings account
//class
SavingsAccount secondAccount =
new SavingsAccount (yourAccount,5);
System.out.println ("Account Number "
+ secondAccount.getAccountNumber ()+
" belonging to " +
secondAccount.getOwner());
money = myFormat.format(secondAccount.getBalance());
System.out.println ("Initial balance = $" + money);
secondAccount.deposit (put_in);
money_in = myFormat.format(put_in);
money = myFormat.format(secondAccount.getBalance());
System.out.println ("After deposit of $" + money in
+ ", balance = $" + money);
secondAccount.withdraw(take_ out);
money out = myFormat.format(take out);
money = myFormat.format (secondAccount.getBalance());

if (completed)

{
System.out.println ("After withdrawal of $" +
money out + ", balance = $" + money);
}
else
{

Code Listing 11.1 continued on next page

Chapter 11 Lab Inheritance

105

System.out.println ("Insuffient funds to " +
"withdraw $" + money out +
", balance = $" + money);

}
System.out.println();

//to test to make sure new accounts are numbered
//correctly
CheckingAccount yourCheckingAccount =

new CheckingAccount ("Isaac Newton", 5000);
System.out.println ("Account Number "

+ yourCheckingAccount.getAccountNumber ()

+ " belonging to "

+ yourCheckingAccount.getOwner());

106 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Code Listing 11.2 (BankAccount.java)

/**Defines any type of bank account*/

public abstract class BankAccount

{
/**class variable so that each account has a unique
number* /

protected static int numberOfAccounts = 100001;

/**current balance in the account*/
private double balance;

/** name on the account*/

private String owner;

/** number bank uses to identify account*/

private String accountNumber;

/**default constructor*/

public BankAccount()

{
balance = 0;
accountNumber = numberOfAccounts + "";
numberOfAccounts++;

}

/**standard constructor
@param name the owner of the account
@param amount the beginning balance*/

public BankAccount(String name, double amount)

{
owner = name;
balance = amount;
accountNumber = numberOfAccounts + "";
numberOfAccounts++;
}

/**copy constructor creates another account for the same

owner
@param oldAccount the account with information to copy

Code Listing 11.2 continued on next page.

Chapter 11 Lab Inheritance ~ 107

@param the beginning balance of the new account*/

public BankAccount(BankAccount oldAccount, double amount)

{

owner = oldAccount.owner;

balance = amount;

accountNumber = oldAccount.accountNumber;
}

/**allows you to add money to the account
@param amount the amount to deposit in the account*/
public void deposit(double amount)

{

balance = balance + amount;

/**allows you to remove money from the account if

enough money is available,returns true if the transaction
was completed, returns false if the there was not enough
money.

@param amount the amount to withdraw from the account
@return true if there was sufficient funds to complete
the transaction, false otherwise*/

public boolean withdraw(double amount)

{
boolean completed = true;
if (amount <= balance)
{
balance = balance - amount;
}
else
{
completed = false;
}
return completed;
}

Code Listing 11.2 continued on next page

108 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

/**accessor method to balance
@return the balance of the account*/
public double getBalance()

{

return balance;

/**accessor method to owner
@return the owner of the account*/
public String getOwner()

{

return owner;

/**accessor method to account number
@return the account number*/

public String getAccountNumber ()

{

return accountNumber;

/**mutator method to change the balance
@param newBalance the new balance for the account*/
public void setBalance(double newBalance)

{

balance = newBalance;

/**mutator method to change the account number
@param newAccountNumber the new account number*/
public void setAccountNumber (String newAccountNumber)

{

accountNumber = newAccountNumber;

