Lab  12: Experimenting with Specialization and Inheritance

NAME: _____________KEY___________________________________________

2.2  What code did you include in your driver?

	     (Paste your code here.)
public class ClockDriver
{
   public static void main (String [] args)

{

    Clock  frenchClock, harrisonburgClock;


 


 frenchClock = new Clock ("Paris");


 harrisonburgClock = new Clock();

}
}
	


3.3  What code did you add?    
	(Paste your code here.)
/**
     * Default Constructor
     */
    public AlarmClock()
    {
        super();
    }


    /**
     * Explicit Value Constructor
     *
     * Constructs a clock for a particular city, setting
     * the time zone appropriately
     *
     * @param city   The city
     */
    public AlarmClock(String city)
    {
        super(city);
    }

	


3.5  What code did you add?

	     (Paste your code here.)
  Clock  frenchClock ;  
  AlarmClock hburgClock;


 

 frenchClock = new Clock ("Paris");
 hburgClock = new AlarmClock();




// What happens if I don’t comment out harrisonburgClock?
	


3.8  What code did you add?

	     (Paste your code here.)
              this.hour = hour;


  this.minute = minute;


  this.second = section;


  this.ampm = ampm;    
    }

	


3.10  What code did you add?

	

	     (Paste your code here.)
 81 
// Call the parent's version of updateTime()
 82         super.updateTime();  // exactly this
 83         hourNow = super.getHour();     OR hourNow = getHour 

 84         minuteNow = super.getMinute();
 85 

secondNow = super.getSecond();
 86 

ampmNow = super.getAMPM();
 87 
// If the alarm is on, get the current hour, minute
 88 
// second, and ampm and check to see if the alarm
 89 
// should sound now
 90 
     if  (on) 
 91 
     {
 92 

 if ((this.hour == hourNow) &&  or this.hour == super.getHour()    
 93 

     (this.minute == minuteNow) && or this.minute == getMinute()
 94 

     (this.second == secondNow) &&  
 95 


this.ampm.compareTo(ampmNow)== 0) or this.ampm.equals(ampmNow)           

 97             
 98 

    { 
 99 


 System.out.println (" alarm should sound now ");
100 


 super.beep();  or  beep();
101 

    } // END inner if 
102         } // END outer if


3.12  What code did you add?

	     (Paste your code here.)

 hburgClock.setAlarm(9, 24,3, "AM");  //any 3 integers and upper case

 hburgClock.turnAlarmOn();

 
	


3.14  What happens (or doesn't happen) if you comment out the call to

      the parent's updateTime() method?

	The time disappears from the faces of the clocks

	


4.3  The setup() method has a Clock as a formal parameter but is

     actually passed an AlarmClock.  Why did it compile properly

     anyway?

	Because an AlarmClock IS-A Clock
	


4.6  Why didn't this class compile?

	Because a Clock IS NOT an AlarmClock  
(superclass can’t access subclass methods)
	


4.9  Why didn't this class compile?

	Because setup method requires an AlarmClock parameter 
and a Clock IS NOT an AlarmClock.
	


4.12 The createClock() method creates and returns AlarmClock objects

     that main assigns to Clock objects.  Why did this class compile

     anyway?

	Because an AlarmClock IS-A Clock
	


4.15 Why didn't this class compile?

	Because a Clock object doesn’t have access to AlarmClock methods
 and although the method returns an AlarmClock, 
the object was originally declared as a Clock and the 
compiler thinks it still is a Clock.
	


