1 Instructions:

 Answer as many of the following questions as you can during the lab period.

 You must work entirely on your own, but you may consult your notes and/or

 request help from the instructor and lab assistant.

 You must type your answers in the worksheet (provided below) and

 submit them using Blackboard (by attaching them). Note: Enter

 "Lab 17" in the "Comments Area".
 If you are unable to complete the assignment during the lab period it

 is strongly recommended that you complete it on your own.

2 Getting Ready:

 Before going any further you should:

 1. Make a directory for this lab.

 2. Setup your development environment.

 3. Download the following files:

 Dukulator.java

 DukulatorWindow.class

 IntegerCalculator.java

 ExpressionObserver.java

 dukulator.gif

 ControllableAlarmClock.class

 ClockDriver.java

 change.gif

 clock.gif

 down.gif

 up.gif

 AlarmController.java

 worksheet.txt

 to your working directory. (In most browsers, the easiest

 way to do this is by right-clicking on each of the links.)

3 Making a Class Polymorphic using an Interface:

 This part of the lab will help you understand one of the important uses of interfaces (and the importance of polymorphism).

 1. Open the source code for the Dukulator class.

 2. Compile, execute and test the Dukulator class.

 (Note: You should execute the application from the command line.)

 3. What aspects of the Dukulator did not work properly?

 4. Open the source code for the ExpressionObserver interface and the IntegerCalculator class.

 5. As you can see, an ExpressionObserver is an object that knows how to evaluate a String representation of an expression and return a String representation of the result. Add a "clause" to the declaration of the IntegerCalculator class so that it claims to implement this interface.

 6. What "clause" did you add?

 7. Add a method to the IntegerCalculator class so that it actually does implement the ExpressionObserver interface. This method must use the calculate() method and must return the String "Error" if the calculate() method throws an exception.
 8. What code did you add?

 9. The DukulatorWindow is a GUI window that contains a "soft" numeric keypad and a one-line display. Familiarize yourself with the behavior of this class by reading the descriptions of the following methods:

 /**

 * Default Constructor

 */

 public DukulatorWindow()

 /**

 * Set the ExpressionObserver that should be notified when

 * the = button is pressed

 *

 * @param observer The observer to notify

 */

 public void setExpressionObserver(ExpressionObserver observer)

 10. Since your IntegerCalculator class is now an ExpressionObserver you can now tell a DukulatorWindow object to call your IntegerCalculator when the = button is pressed.

 Modify the Dukulator class so that it constructs an IntegerCalculator and associates it with the DukulatorWindow.
 11. What code did you add?

 12. Compile, execute, and test the Dukulator class.

 (Note: You should execute the application

 from the command line.)

 13. Did it work properly?

 14. How did polymorphism come into play in this example?

4 Interfaces, Polymorphism, and GUIs:
 This part of the lab will help you learn how to use interfaces

 and polymorphism to build classes that contain the "application logic"

 for GUI-based applications.

 1. Open the ClockDriver class.

 2. Compile, execute (from the command line) and test the

 ClockDriver class. (Note: The information at the

 bottom of the clock shows the state of the alarm settings. The

 buttons/checkbox are for changing the alarm settings.)

 3. What aspects of the clock did not work properly?

 4. The ControllableAlarmClock is a GUI window that contains a

 "displays" and "controls" for an alarm clock. Familiarize yourself

 with the behavior of this class by reading the descriptions

 of the following methods:

 /**

 * Default Constructor

 *

 * Construct an AlarmClock for your "home" city

 */

 public ControllableAlarmClock()

 /**

 * Explicit Value Constuctor

 *

 * Construct an AlarmClock for the given city

 * (Note: Not all city names are recognized)

 */

 public ControllableAlarmClock(String city)

 /**

 * Add an ActionListener to the buttons on the alarm setter

 *

 * @param listener The ActionListener

 */

 public void addActionListener(ActionListener listener)

 /**

 * Get the AMPM setting on the alarm

 *

 * @return "AM" or "PM"

 */

 public String getAlarmAMPM()

 /**

 * Get the hour setting on the alarm

 *

 * @return The hour setting on the

 */

 public int getAlarmHour()

 /**

 * Get the minute setting on the alarm

 *

 * @return The minute setting on the

 */

 public int getAlarmMinute()

 /**

 * Is the alarm on?

 *

 * Note: This method does not check to see if the alarm is currently

 * beeping. It checks to see if the alarm will beep when at

 * the appropriate time

 *

 * @return true if the alarm is currently on; false otherwise

 */

 public boolean isAlarmOn()

 /**

 * Set the hour of the alarm

 *

 * @param hour The hour of the alarm

 */

 public void setAlarmHour(int hour)

 /**

 * Set the minute of the alarm

 *

 * @param minute The minute of the alarm

 */

 public void setAlarmMinute(int minute)

 /**

 * Set the AM/PM of the alarm

 *

 * @param ampm "AM" for before noon, "PM" for noon and after

 */

 public void setAlarmAMPM(String ampm)

 /**

 * Turn the alarm off

 */

 public void turnAlarmOff()

 /**

 * Turn the alarm on

 */

 public void turnAlarmOn()

 5. Familiarize yourself with the ActionListener

 java.awt.event.ActionListener interface. (This interface is part of the Java library that is used to develop graphical user interfaces. It has one method, actionPerformed(). This method is called when buttons/checkboxes are pressed.)

 6. Familiarize yourself with the ActionEvent.getActionCommand()

 java.awt.event.ActionEvent#getActionCommand()

method in the java.awt.event.ActionEvent class. (This class is also part of the Java library that is used to develop graphical user interfaces. This method returns a String that can be used to identify the button/checkbox that was pressed.)

 7. Modify the actionPerformed method in the AlarmController class so that it prints

 the String description of the button/checkbox that was pressed.

 8. What code did you add?

 9. Modify the ClockDriver class. It must now also:

 * Declare an AlarmController object named controller.

 * Construct controller (passing the constructor clock).

 * Call the clock object's addActionListener() method, passing it controller.

 10. What code did you add?

 11. Compile and execute the ClockDriver class.

 (Note: You should execute the application from the command line.)

 12. What String is associated with each button/checkbox in the ControllableAlarmClock?

 13. Add the following code to the the actionPerformed method in the AlarmController class:

 int value;

 if (ac.equals("HOUR_DOWN"))

 {

 value = clock.getAlarmHour();

 value--;

 if (value < 1) value = 12;

 clock.setAlarmHour(value);

 }

 else if (ac.equals("HOUR_UP"))

 {

 value = clock.getAlarmHour();

 value++;

 if (value > 12) value = 1;

 clock.setAlarmHour(value);

 }

 14. Compile the AlarmController class and execute and test the ClockDriver class.

 (Note: You should execute the application from the command line.)

 15. What works and what doesn't?

 16. Modify the actionPerformed() method in the AlarmController class so that everything

 works properly.

 17. What code did you add?

