Lab 16: Experimenting with Polymorphism through Inheritance

1 Instructions:

 Answer as many of the following questions as you can during the lab period.

 You must work entirely on your own, but you may consult your notes and/or

 request help from the instructor and lab assistant.

 You must type your answers in the worksheet (provided below) and

 submit them using Blackboard (by attaching them). Note: Enter

 "Lab" in the "Comments Area".
 If you are unable to complete the assignment during the lab period it

 is strongly recommended that you complete it on your own.

2 Getting Ready:

 Before going any further you should:

 1. Make a directory for this lab.

 2. Setup your development environment.

 3. Download the following files:

 Document.java

 FormattedDocument.java

 Driver1.java

 Driver2.java

 Lab16_worksheet.doc

 to your working directory. (In most browsers, the easiest

 way to do this is by right-clicking on each of the links.)

 4. Familiarize yourself with the Document and FormattedDocument classes.

 (Note: These classes are different from any earlier versions you may have

 seen or used.)

3 Finding Errors Related to Polymorphism:

 This part of the lab will help you learn how to find errors related to polymorphism.

 1. Compile all of the classes

 2. Execute Driver1.

 3. What output was generated?

 4. Is the output correct?

 5. Execute Driver2.

 6. What output was generated?

 7. What is wrong with the output?

 8. Why is the output incorrect? (Hint: Add output statements that

 will help you debug the getLineCount() method.)

4 Review of Accessibility/Visibility:

 This part of the lab reviews some issues involving

 accessibility/visibility.

 1 Make the attribute text in the Document class private.

 2 Compile the Document and FormattedDocument classes (in that order).

 3. What compile-time errors are generated and why?

 4. Fix the problem (without changing the accessibility/visibility of text).

 (Hint: How can a FormattedDocument object get access to text if it's private?)

 5. What did you do to fix the problem?

 6. Compile and execute Driver2. (Note: You should not get a runtime exception.
 If you do, you made a mistake when you answered the previous question that
 resulted in an infinite recursion - a method calling itself forever. You should be
 able to figure it out; if not, ask for help before proceeding.)
 7. What output is generated?

 8. Is the output correct?

5 Polymorphism Basics:

 This part of the lab will help you gain a better understanding of the basics of polymorphism through inheritance.

 1. In Driver2, the getDescription() message is sent to the object named formatted.

 What code is executed as a result (i.e., what class is the code in)?

 2. Continuing with this same example, the getDescription() method sends the message getLineCount() to this. What code is executed as a result? Why?

6 The Complexities of Polymorphism:

 This part of the lab will help you gain a better understanding of the complexities that arise because of polymorphism.

 1. Change the getLineCount() method in the Document to the following: getLineCount.java

 public int getLineCount()

 {

 char character;

 int count, i;

 String temp;

 temp = this.getText();

 // Initialize the line counter

 count = 1;

 if (temp.length() == 0) count = 0; // No words means no lines

 // Count the number of newline characters

 for (i=0; i < temp.length(); i++)

 {

 character = temp.charAt(i);

 if (character == '\n') count = count + 1;

 }

 return count;

 }

 2. Explain the changes.

 3. In Driver2, the getText() message is sent to the object named formatted.

 What code is executed as a result? Why?

 4. In Driver2, the getDescription() message is sent to the object named formatted.

 What code is executed as a result (i.e., what class is the code in)?

 5. Continuing with this same example, the getDescription() method sends the message getLineCount() to this. What code is executed?

 6. Continuing with this example, the new version of getLineCount() sends the getText() message to this. What code is executed as a result? Why?

 7. Compile and execute Driver2.

 8. What output is generated?

 9. Is the output correct?
 10. Compile and run the Driver1.

 11. What output is generated?

 12. Is the output correct?

