Lecture 20 - November 4th 2008
We talked a little about Lab21 and the available constants belonging to each of the wrapper classes. These constants help answer the following questions.

· Suppose you want a really big number to use in finding the inverse or the percent. Where could you find such a number?

· Suppose you want to find a really small number. Where could you find such a number?

Well, it depends on what type of number you want.

	http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html
http://java.sun.com/j2se/1s.4.2/docs/api/java/lang/Double.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Byte.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Short.html

We went on to talk about recursion.

Here is a link to the text book's slides.

Here is a link to my slides.
You should trace through the binarySearch program in the text.

Here are links to some interesting sites about recursion.

· http://www.cs.princeton.edu/introcs/23recursion/
· http://www.arjay.bc.ca/www0/Modula-2/Text/Ch18/Ch18.4.html
· http://escherdroste.math.leidenuniv.nl/index.php?menu=symmetry&sub=droste
	The tree in the slides comes from the following sites
http://www.charlesriver.com/algorithms/lab-rec2lines.html
http://www.charlesriver.com/algorithms/doc/

	The following recursive definition defines a “line-drawing tree”:

· A line-drawing tree of complexity 1 is a single line segment 20 pixels long (the trunk).

· A line-drawing tree of complexity n > 1 is a line segment 20n pixels long (the trunk), with two line-drawing trees of complexity n-1 branching at 45 degree angles from its end.

For example, here, from left to right, are line-drawing trees of complexities 1, 2, and 3:

[image: image1.png]

	Odd Numbers

Design and code a recursive algorithm that takes an integer, n, as its parameter, and outputs all the odd numbers between n and 1, in decreasing order. Note that n can be either odd or even. For example, if n = 5, the algorithm’s output should be

 5

 3

 1
while if n = 8 the algorithm should output

 7

 5

 3

 1
Note that if n is zero or less, there are no odd numbers between it and 1.

Code this algorithm as a static method of some class. The only precondition for this problem is the trivial one that n is an integer — n may be positive, negative, or zero, and may be either even or odd.

