Lab 3: Experimenting with Exception Handling

Instructions: Answer as many of the following questions as you can during the lab period. If you are unable to complete the assignment during the lab period it is strongly recommended that you complete it on your own.

You may work on this assignment alone or in a group (of no more than 2 students). In any case, you must each submit your solution.

 You must type your answers in the worksheet (provided below) and submit your answers using Blackboard (by attaching the worksheet AND ALL of your source code).
Note: Enter "your name and Lab3" in the Comments Area.

Getting Ready: Before going any further, you should:

1. Make a directory for this lab on your Novell drive.

2. Download the following files into the directory you created:

worksheet.doc
Example1.java
Example2.java
Example3.java
 (In most browsers, the easiest way to do this is by right-clicking on each of the links above.)

3. Type your answers into the blocks provided on the worksheet. When you are asked for the output, copy and paste it from jGrasp.
1. A Simple Example: This part of the lab considers a simple example of exception handling.

1. Open Example1.java in the editor (e.g. jGrasp). Click on the icon which turns line numbering on.
2. Compile and execute the application Example1.

3. What was output by the application when you executed it?

4. Change the value of denominator to 0.

5. Re-compile and re-execute Example1.

6. What "error" was generated by the application when you executed it?

7. Why was this "error" generated at run-time (rather than at compile-time)?

8. Add a try-catch statement. Specifically, put only the statement that generated the exception inside of the try block and put no statements in the catch block. (Hint: You should be able to determine what exception to catch and what line generated the exception from the error message that you received during the previous step.)

9. Re-compile Example1.

10. What error is generated and why?

11. Move the "output statement" into the try block (as well).

12. Add the statement System.out.println("attempt to divide by 0."); to the catch block.

13. Re-compile and re-execute Example1.

14. What output was generated?

15. Add a call to the printStackTrace() method of the ArithmeticException to the end of the catch block.

16. Re-compile and re-execute Example1.

17. What output was generated?

18. Did the application execute properly or not?

2. A More Complicated Example: This part of the lab considers an example of exception handling within and outside of block statements.

1. Open Example2.java in the editor (e.g. jGrasp). (Note: Different editors handle tabs/spaces differently. As a result, you may need to fix the indentation of files created by other people. In jGrasp you can do this by first generating a Control Structure Diagram (F2) and then removing the CSD (Shift-F2).)

2. Compile Example2.

3. What error was generated?

4. Initialize i to 0 inside of the try block (but before the for loop).

5. Compile Example2.

6. What error was generated?

7. It is not possible for i to be used before it is initialized. Why is this error generated anyway? (Hint: Think about block statements.)

8. Move the initialization of i before the try block.

9. Compile and execute Example2.

10. What output is generated?

11. Why aren't all of the divisions even attempted?

12. Fix Example2 so that it executes properly. (Hint: Move the try-catch block inside of the for block.) What is output?

3. An Inappropriate Use of Exception Handling: This part of the lab considers an inappropriate use of exception handling and how to "fix" it.

1. Compile and execute Example3.
	2. What is output?

3. Modify Example3 so that it loops "properly" and does not need to use a try-catch statement. (Note: The output should not change.) What did you change?

