The Process Used to Design the Lot Class 
1 The Textual Description: 

 A lot is an item (or items) to be sold at auction.

A lot has an associated number (e.g., 100, 101, 101a) and a   multi-line description.  It may or may not have a reserve price (which is the lowest price that the lot can be sold for).    The reserve price is not reported to potential bidders.  The lot needs to keep track of the highest bid thus far   and the associated bidder number.  A lot is closed when it can no longer be bid on.

2 Identification of Noun Phrases: 

The following noun phrases in the second paragraph seem to be important:

        "associated number"

        "multi-line description"

        "reserve price"

        "highest bid"

        "associated bidder number"

At this point, it seems that these noun phrases will correspond to variables of the following type:

         "associated number"                 String

        "multi-line description"             String

        "reserve price"                           double

        "highest bid"                              double

        "associated bidder number"       int

3 Identification of Verb Phrases: 

 The following verb phrases in the second paragraph seem to be important:

        "keeps track of"

        "is closed"

The first seems to indicate that each of the noun phrases corresponds to a state variable.  The second seems to indicate that "closing" is a behavior that a lot needs to understand and that  we probably need to add an attribute to keep track of whether a  lot is closed or not.

4 The Initial Encapsulation: 

What follows is the initial encapsulation created using the noun phrases and verb phrases above.

public class Lot

{

    private boolean            closed;

    private boolean            hasReserve;

    private double             bid;

    private double             reserve;

    private int                   bidder;

    private String             number;

    private String             description;

    public void close()

    public double getBid()

    public String getNumber()

    public boolean isClosed()

}

5 Refining the Initial Attributes: 

It doesn't seem necessary to have the hasReserve attribute since not having a reserve prices is the same as having a reserve price of 0.00.  Hence, this attribute can be omitted.

In addition, since we may need to process the description one line at a time, it seems better to store it in a String[] rather than an individual String.

6 Looking for Missing Behaviors: 

One obvious shortcoming of the encapsulation above is that there is   no way to change the bid.  Hence, it make sense to have the following method:

     public void increaseBidTo(double amount, int bidder)

The encapsulation above does not include a getReservePrice()  method because bidders are not supposed to know the reserver price or whether a reserve price exists.  However, bidders are entitled  to know whether they actually purchased a lot.  Hence, it makes sense   to have the following method:     public boolean wasSold()
 It is also clear that it will probably be necessary to  obtain a String representation of a lot.

 This leads to the addition of the following method:   public String toString()
When there have not yet been any bids, this method must return a String containing the lot number (in a field of width 5),  a space, and the first line of the description (in a field of width 20);

When there have been bids but the lot has not been sold, the  String returned must also include a space,   the current high bid (in an "%8.2f" field), a space,  and the number of the high bidder (in a "(%5d)" field).

When the lot has been sold, it must also include a "*".

7 Identifying Constructors: 

 It is impossible to construct a lot without knowing the number,  description, and reserve price.  This leads to the inclusion of the   following explicit value constructor:

    public Lot(String number, String[] description, double reserve)

8 Identifying Helpful Overloaded Methods: 

Since a reserve price of 0.00 is the same as not having a  reserve price, it makes sense to include the following overloaded constructor:      
public Lot(String number, String[] description)

which simply calls the other explicit value constructor with  a reserve of 0.0
