The Process Used to Design the Catalog Class

1 The Textual Description:

 A catalog is a collection of lots at an auction.

 A catalog has a title that describes it. Lots can be added to a catalog at any time. In the interest of keeping auctions short, no catalog ever has more than 1000 lots. During an auction, the catalog keeps track of the current lot. The catalog can accept bids (from bidders) on the current lot, and the current lot only. There is a minimum increment that bids must satisfy in order to be acceptable. This increment varies as follows:

 High Bid

 Min. Increment.

 0.00-20.00

1.00

20.01-50.00

5.00

50.01-100.00

10.00

100.01-1000.00

20.00

1000.01 or More

100.00

2 Identification of Noun Phrases:

 The following noun phrases seem to be important:

 "collection of lots"

 "title that describes it"

 "current lot"

 "minimum increment"

At this point, it seems that these noun phrases will correspond to variables of the following type:

 "collection of lots" Lot[]

 "title that describes it" String

 "current lot" int (an index)

3 Identification of Verb Phrases:

 The following verb phrases in the second paragraph seem to be important:

 "added to"

 "keeps track of"

 "accept bids on the current lot"

 "increase by particular amounts"

The phrase "keeps track of" seems to indicate that each of the noun phrases corresponds to a state variable. The others seem to indicate the need for a method.

4 The Initial Encapsulation:
 What follows is the initial encapsulation created using the noun phrases and verb phrases above.

public class Catalog

{

 private int current;

 private Lot[] lots;

 private String title;

 private double minimumIncrement;

 public void acceptBid(double amount, int bidder)

 public void addLot(Lot lot)

 public Lot getCurrentLot()

}

5 Looking for Missing Behaviors:

 The phrase "the increment varies" means that it probably makes sense to think of the increment as a method rather than an attribute. Hence, the following method was added: We have decided on the following:

 private double getIncrement(double level)

In addition, for convenience, it probably makes sense to include the following method:

 private double getNextAcceptableBid()

that uses the current high bid and the getIncrement() method to determine the next acceptable bid.

6 Looking for Missing Behaviors:

 It is clear that it will probably be necessary to btain a String representation of a Catalog.

 This leads to the addition of the following:

public String toString()

This method must return the title, followed by a new-line character, followed by the String representation of each lot (terminated with a new-line character).

7 Identifying Constructors:

 It is impossible to construct a Catalog without knowing its title. This leads to the inclusion of the following explicit value constructor:

 public Catalog(String title)

8 Identifying Helpful Overloaded Methods:

 The method acceptBid(double amount, int bidder) requires the user to specify the amount of the bid. However, it seems likely that, in some situations, the bidder will want to

increase the high bid by the minimum amount possible. Hence, it seems appropriate to add the following:

 public void acceptBid(int bidder)

which will call getNextAcceptableBid() and pass it to the two-parameter version.

9 Identifying Class Attributes:

 There can be at most 1000 lots in a catalog. One way to capture this is to add the following class constants:

 private static final int MAX_SIZE = 1000;

10 Identify Possible Remaining Problems:

 A user of the Catalog class will certainly want to be able to loop over the Lot objects as the auction proceeds. This leads to the inclusion of the following attribute:

 private int numberOfLots;

and the following two methods:

 public boolean hasMoreLots()

 public Lot nextLot()

 which can be used as follows (after they are implemented):

 while (catalog.hasMoreLots())

 {

 lot = catalog.nextLot();

 // Operate on lot

 }

In addition, it is likely that the users of the Catalog class will, at any point in time, want to know how much many has been spent thus far on all lots, not including the current lot. This argues for the inclusion of the following:

 public double totalValue()
