Lab 12 – Motivation for Inheritance.

Name ______Jeff Wyman____________

 4. 1.
What attributes are the same between the Salaried and Hourly workers?

	· All private variables (name, SSn, exemptions, wage, hours)
· Constructors (except for the name of course)

· Methods (pay and toString)

	

Are there any that are different?

No, except for the names of the explicit constructors.

 4. 2. What methods are the same in name between the Salaried and Hourly workers?

	pay and toString

 4. 3. Which methods do the same thing? Which methods do different things?

	The constructors and toString Methods are identical in function. The pay methods are similar, but do different things.

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

	Two complete statements in each worker, modified two others, modified four in HR.java

So four complete individual statements total

 4. 10. Did this change require any changes to your SalariedWorker class?

	no

 5. 1. In which class are these located?

	Employee

 5. 2. Are these attributes found anywhere in any of the other three classes?

	no

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

	no

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

	public class SalariedWorkerV2 extends Employee

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

	No, and yes in the same fashion

 5. 7. In HRV2, do you see any objects of the "Employee" type?

	No, just HourlyWorkerV2 and SalariedWorkerV2 objects.

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

	pay methods

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

	toString()

 5. 10. Does this make sense? Why or why not?

	Yes, because while both specialized workers will share the same attributes and the same toString method, they have different pay methods that are specific to their class alone.

 6. 1. Where would you add this same field to your Employee.java family of classes?

	
In the constructor, its parameters, and private attributes

	

Where would you change the toString()?

employee

	

What constructors do you need to change?

Employee and its children

 6. 3. Does inheritance save you any coding?

	
Yes, it saves time for attributes and methods that are identically shared. It does require some extra coding, but for the most part the coding is cut down

	What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

While saving some coding, inheritance only seems useful for a larger number of inter-related classes. It also adds some more work when a parent’s variables are private, requiring a get method for the children to retrieve and use them.

