Lab 12 – Motivation for Inheritance.

Name __Matt Serone__

 4. 1.
What attributes are the same between the Salaried and Hourly workers?

The attributes that are the same include all of the fields, which include: name, SSN, exemptions, wage, and hours.

Are there any that are different?

No, there are no fields that are different.

 4. 2. What methods are the same in name between the Salaried and Hourly workers?

They share the toString() method.

 4. 3. Which methods do the same thing? Which methods do different things?

The toString method() does the same thing for both classes. The pay method does the process of finding the wages differently for each class but the concept of obtaining the pay is the same.

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

There were 4 individual statements added to the SalariedWorker and HourlyWorker classes collectively.

 4. 10. Did this change require any changes to your SalariedWorker class?

No, this did not require any changes to my SalariedWorker class.

 5. 1. In which class are these located?

These are located in the Employee Class.

 5. 2. Are these attributes found anywhere in any of the other three classes?

No, they are not found anywhere else.

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

No, it does not contain any attributes of its own.

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

The class SalariedWorkerV2.java is linked to the Employee.java class by the keyword extends, which is located in the class header.

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

Yes, the HourlyWorkerV2.java links to the Employee.java class in the same way as the SalariedWorkerV2.java, in that it uses the extends keyword.

 5. 7. In HRV2, do you see any objects of the "Employee" type?

No, there are no instances of the Employee class, yet there are instances of its subclasses.

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

The pay method is in the subclasses of Employee but not in Employee itself.

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

The toString method is in the Employee class and not in either of the subclasses. The constructor is also in the Employee class, which will be called by the subclasses instead of having their own.

 5. 10. Does this make sense? Why or why not?

Yes, this does make sense because the toString method will be the same for both of the subclasses, while the pay methods will be different. This allows the classes to act differently, yet still have some common features.

 6. 1. Where would you add this same field to your Employee.java family of classes?

You would add this field to the Employee.java class. That way the subclasses can access it as well.

Where would you change the toString()?

You would change the toString method in the Employee class

What constructors do you need to change?

You would need to change all of the constructors. You would need to add a parameter to all of the class's constructors, and then in Employee, you would need to set the new fields value.

 6. 3. Does inheritance save you any coding?

Yes, inheritance saves a whole lot of coding.

What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

Advantages:

 Saves coding

 saves time

 helps organize code better

Disadvantages:

 might run into a situation where the class can be compatible with two super classes and you might have trouble deciding which class it should extend.

