Lab 12 – Motivation for Inheritance.

Name __________________

 4. 1.
What attributes are the same between the Salaried and Hourly workers?

	There are currently no differences between the Salaried and Hourly workers.

	

Are there any that are different?

 4. 2. What methods are the same in name between the Salaried and Hourly workers?
	Both the pay() and toString() methods are the same in name.

 4. 3. Which methods do the same thing? Which methods do different things?

	The classes are identical copies of each other currently.

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

	I had to add 4 statements to each class, 8 collectively.

 4. 10. Did this change require any changes to your SalariedWorker class?

	No, it did not.

 5. 1. In which class are these located?

	They are located in the Employee class.

 5. 2. Are these attributes found anywhere in any of the other three classes?

	Yes, they are used by the methods in the SalariedWorkerV2 class and the HourlyWorkerV2 class.

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

	No, it only uses the attributes from the Employee class.

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

	The constructor inside the SalariedWorkerV2 class links it to the Employee class.

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

	Yes, it links to the Employee class in the same way that SalariedWorkerV2 does.

 5. 7. In HRV2, do you see any objects of the "Employee" type?

	There are objects of SalariedWorkerV2 and HourlyWorkerV2 type, which are themselves a type of “Employee.”

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

	The pay() method does not exist in the Employee class, but exists in the specialized classes because the pay() method changes depending on the type of employee.

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

	The Employee class contains the toString() method unlike the other two subclasses.

 5. 10. Does this make sense? Why or why not?

	Yes, because there is no difference in the toString() depending on the type of employee, so it should be part of the parent class. Meanwhile, the pay() method is dependant on the type of employee, so it shouldn’t be in the parent class, instead it should be in the specialized employee subclass.

 6. 1. Where would you add this same field to your Employee.java family of classes?

	It would be added to the Employee class declerations.

	

Where would you change the toString()?

You would need to edit the toString() in the Employee.java class

	

What constructors do you need to change?

You would need to change the constructors in all 3 classes in order for the program to work appropriately.

 6. 3. Does inheritance save you any coding?

	In this particular lab, it saved a small amount of coding, but if there was less editing, and if there were even more subclasses, the inheritance would save an exponential amount of time.

	What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

It can be additional work to try and call information from the subclasses if needed (pay). But, you don’t have to re-write methods for two related classes if instead you make a Superclass method in replacement of those two methods that contain the same code.

