Lab 12 – Motivation for Inheritance.

Name: Ryan Johnson
 4. 1.
What attributes are the same between the Salaried and Hourly workers?

	Name, SSN, hours, wage, exemptions

	

Are there any that are different?

Nope

 4. 2. What methods are the same in name between the Salaried and Hourly workers?

	The pay() and toString() methods are the same and accept identical parameters

 4. 3. Which methods do the same thing? Which methods do different things?

	The toString() method returns the same format in both classes, however the pay() method is calculated differently depending on the type of worker.

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

	10 total(3 in each worker class, 4 in the driver for the constructors)

 4. 10. Did this change require any changes to your SalariedWorker class?

	No, because they are not being paid by the hour.

 5. 1. In which class are these located?

	All of the previous private attributes are stored in Employee.java

 5. 2. Are these attributes found anywhere in any of the other three classes?

	They are found in the contructors of both of the worker classses.

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

	No

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

	Keyword - extends

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

	HourlyWorker is a subclass of Employee does not contain its won attributes.

 5. 7. In HRV2, do you see any objects of the "Employee" type?

	Nope

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

	The pay() method

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

	The toString() method

 5. 10. Does this make sense? Why or why not?

	Both of the employee’s should have the same format for their data, so yes, it makes sense.

 6. 1. Where would you add this same field to your Employee.java family of classes?

	In the constructor where you would place the super. keyword.

	

Where would you change the toString()?
In the super class

	

What constructors do you need to change?

The constructors in both of the sub classes.

 6. 3. Does inheritance save you any coding?

	Of course, it avoids duplicate coding.

	What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

Advantages: It avoids duplicate code, it creates a copy of methods and attributes that can be used by other classes, and it makes it so there is less code to look at when debugging.

Disadvantages: Repeating variable and method names can be confusing.

