Lab 12 – Motivation for Inheritance.

Name: Jeremy Halterman

 4. 1.
What attributes are the same between the Salaried and Hourly workers?

	private String name;

private String SSN;

private int exemptions;

private double wage;

private double hours;

	

Are there any that are different?

no

 4. 2. What methods are the same in name between the Salaried and Hourly workers?

	public double pay(double hours)
public String toString()

 4. 3. Which methods do the same thing? Which methods do different things?

	The toString methods both return each class’s attributes.
The double pay(double hours) method are declared the same but involving finding the pay in a different manner

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

	4

 4. 10. Did this change require any changes to your SalariedWorker class?

	No, unless they wanted the results to be placed on the output

 5. 1. In which class are these located?

	In a new class called Employee

 5. 2. Are these attributes found anywhere in any of the other three classes?

	No

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

	No

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

	Extends Employee in Class header

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

	No.
It also links to Employee.java through an extends keyword

 5. 7. In HRV2, do you see any objects of the "Employee" type?

	No

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

	The double pay() method

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

	None.

 5. 10. Does this make sense? Why or why not?

	No. it would make more sense to have the method in the superclass, so that any calls to the method could be overridden

 6. 1. Where would you add this same field to your Employee.java family of classes?

	Would add the homeDepartment field to the Employee.java class as well

	

Where would you change the toString()?

The toString() field could be used through inheritance, so place it in the Employee.java class

	

What constructors do you need to change?

Change the employee.java superclass constructor to accept a department String. Also must include the same parameter in the individual Hourly/Salary Employee classes

 6. 3. Does inheritance save you any coding?

	The use of inheritance saved the recoding of a default toString as well as the constructors for each individual subclass.
The only thing that couldn’t be made easier is the pay() methods...because each used a different set of local variables, including a protected one for Hourly Employees.

	What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

Inheritance allows the use of methods from superclasses. The constructors can be briefed by calling super. Also any methods in the superclasses can be called within a subclasses same method, again use super.

A disadvantage is that any newly created variables in the superclass for a subclass can only be applied to a superclass method and so any subclass that wishes to use that method will have to use the same method unless it is overridden. Also the time it takes for a method to go through each level of inheritance to reach a method or variable

