Lab 12 – Motivation for Inheritance.

Name Kyle Ames___________

 4. 1.
What attributes are the same between the Salaried and Hourly workers?

	Name, SSN, exemptions, hours

	

Are there any that are different?

Yes, wage is different. For hourly workers the wage is their rate of pay per hour. For Salaried workers the wage is a flat number that is unaffected by hours worked.

 4. 2. What methods are the same in name between the Salaried and Hourly workers?

	Pay(double hours), toString()

 4. 3. Which methods do the same thing? Which methods do different things?

	The toString methods do the same thing for both classes; however, the pay methods do not. For Hourly workers the pay method returns the result of the workers wage times the number of hours worked. For Salaried workers the pay method just returns the value of the wage attribute.

 4. 8. How many individual statements did you need to add to SalariedWorker and HourlyWorker collectively?

	Added = 4 (two in each class)
Altered = 4 (two in each class)

 4. 10. Did this change require any changes to your SalariedWorker class?

	No

 5. 1. In which class are these located?

	Employee

 5. 2. Are these attributes found anywhere in any of the other three classes?

	The other children classes have those attributes by inheritance, but they do not have them explicitly.

 5. 3. Look at the SalariedWorkerV2.java class. Does it contain any attributes of its own?

	No.

 5. 4. What do you see that might "link" SalariedWorkerV2.java to the Employee.java class?

	SalariedWorkerV2 extends Employee

 5. 5. How about HourlyWorkerV2? Does it contain any attributes? Does it also link to the Employee.java class?

	No. Yes, it contains the line in the signature HourlyWorkerV2 extends Employee

 5. 7. In HRV2, do you see any objects of the "Employee" type?

	No.

 5. 8. In HRV2, we are building the more specific versions of Employee, the HourlyWorkerV2 or SalariedWorkerV2. Looking at the methods in Employee, what method does not exist in Employee.java that does exist in each of the two specializations?

	Pay(double hours) method

 5. 9. What methods exist in Employee.java that do not exist in each of the two specializations?

	toString() method

 5. 10. Does this make sense? Why or why not?

	Yes. The toString method in our previous Salaried and Hourly methods said the same thing. It seems redundant to have a separate toString method for each new Salaried and Hourly worker class when they inherit it from Employee.

 6. 1. Where would you add this same field to your Employee.java family of classes?

	To the Employee class

	

Where would you change the toString()?
The Employe class

	

What constructors do you need to change?

I need to change all three constructors. The parameters received need to be changed in HourlyWorkerV2 and SalariedWorkerV2. The calls to the parent’s constructor must also be changed to include the new parameter received by the child’s constructor. In the Employee class I need to change the parameters received and must also assign a value to that new attribute with the new parameter.

 6. 3. Does inheritance save you any coding?

	Yes. Inheritance saved the duplication of a toString method for each child. It also saved having to write a separate set of attributes for each child.

	What would you say are the advantages and disadvantages of using an inheritance structure for a related set of classes?

Inheritance allows for cleaner code among related sets of classes. If a lot of the attributes are the same, and you need to do the same thing to them having them be extensions makes more sense instead of writing the same code for each of them. However; problems do arise. You have to make sure that everything just accessible enough to prevent too much from being modifiable from the outside. It can also get complicated quickly depending on the number of attributes and methods that are unique to each child.

