Things to know for exam on Thursday

Note that it is not possible to take a make-up exam

	1. Bindings

a. types
	What are the four types of bindings generally associated with a variable?

	b. times
	For each of the following bindings commonly associated with a variable, tell when they most commonly occur (be as specific as possible):

location

value

type

name

	 c. times
	What type of binding generally occurs at

language design time

language implementation time

compile time

load time

run time

	c. times

Louden, p. 80 #5.1 2nd edition
	Pick a language from among the languages C, Java, Ada, and Pascal, and give as precise binding times as you can for the following attributes, and give reasons for your answers:

a. the maximum number of significant digits in a real number

b. the meaning of char

c. the size of an array variable

d. the size of an array parameter

e. the location of a local variable

f. the value of a constant

g. the location of a function

	
	

	2. Variable

a. scope

1. dynamic

2. static
Louden, p. 181, #5.9, 2nd edition
	 procedure scope2 is

 a, b: integer;

 function p return integer is

 a : integer;

 begin –- point 1

a := 0;

b := 1;

return 2;

 end p;

 procedure print is

 begin -- point2

 put(a);

new_line;

put(b);

new_line;

put(p);

new_line;

 end print;

 procedure q is

b, p : integer;

 begin – point 3

 a:= 3;

 b := 4;

 p := 5;

 print;

 end q;

 begin

 a := p;

q;

 end scope2;

	
	with ada.text_io;
 with ada.integer_text_io;
 use ada.text_io;
 use ada.integer_text_io;
 procedure scope1 is
 a, b: integer;
 function p return integer is
 a,p : integer;
 begin -- point 1
 a := 0;
 b := 1;
 p := 2;
 return p;
 end p;

 procedure print is
 begin -- point2
 put(a);
 new_line;
 put(b);
 new_line;
 end print;

 procedure q is
 b : integer;
 begin -- point 3
 a:= 3;
 b := 4;
 print;
 end q;

 begin
 a := p;
 q;
 end scope1;

	b. lifetime

	

	3. Selection statements in FORTRAN, Java, Pascal, Ada

a. types

b. behavior

c. syntax

d. short circuit evaluation
	The basic form of an <if-statement> is shown below in EBNF where <statement> is either a single statement or a group of statements enclosed in curly braces.

<if-statement> → if (<expression>) <statement> [else <statement>]

By the above run, the following is a legal <if-statement> in which e1 and e2 are expressions and S1 and S2 are statements or statement groups.

if (e1) if (e2) S1 else S2

Either explain in words why this if-statement is ambiguous or draw two different parse trees for

	The advantage of short-circuit evaluation of Boolean or logical expressions is that it can prevent certain runtime errors from occurring.

Describe how short-circuit evaluation behaves with the and operator.

Given the following pseudo-code examples, which is the one that can prevent an error from occurring and what error might occur with the other one?

if (i <= last index) and a(i) >= x) then

if (a(i) >= x) and (i <= last index) then

 ...
	Given the following legal FORTRAN statements, show how they would be written in Java or Pascal.

 if (x) 10, 20, 30

10 write (6,22) x * x

 go to 40

20 write (6, 22) x + 4.5

 go to 40

30 write (6, 22) x - 5.3

40 x = x + 2.2

	The advantage of short-circuit evaluation of Boolean or logical expressions is that it can prevent certain runtime errors from occurring.

Describe how short-circuit evaluation behaves with the and operator.

Given the following Pascal like pseudo-code examples, which is the one that can prevent an error from occurring and what error might occur with the other one?

if (p <> nil and p^.data = 10) then

 ...

if (p^.data = 10 and p <> nil) then

 ...

	The advantage of short-circuit evaluation of Boolean or logical expressions is that it can prevent certain runtime errors from occurring.

Describe how short-circuit evaluation behaves with the or operator

Given the following Pascal like code where p is a pointer, rewrite the following and statement as an equivalent or statement.

if (p <>= null and p^.data = 10) then

this may not be good...

	C, C++, and Java all require their Boolean operators to be short circuit. Pascal does not, and Ada allows the programmer to choose.

How does the Ada programmer distinguish between a statement in which they want short-circuit evaluation to occur and one in which they don’t?

Show a code example.
	C, C++, and Java all require their Boolean operators to be short circuit. Pascal does not, and Ada allows the programmer to choose.

Given the following Pascal-like pseudo code in a language which has short-circuit evaluation, how would you have to write the code in a language which didn’t have it to avoid the error that is prevented in a language which has it?

if (p <> nil) and p^.data = 10) then

 ...

	(True or False) In Ada, the case values must be distinct as well as exhaustive.
	Rewrite the ada case statement below, as a Java case statement

case x-1 is

 when 0 =>

 y := 0;

 z := 2;

 when 2..5 =>

 y := 3;

 z := 1;

 when 7 | 9 =>

 z := 10;

 when other =>

 null;

end case;

	How would the following FORTRAN statement be written in Pascal?

goto (53, 42, 1, 13, 20) X

	

	4. Iteration statements in FORTRAN, Java, Pascal, Ada

a. types

b. behavior

c. syntax
	In C and Java the index value of a for loop may be defined outside of the for loop or inside it. Where is the index values of an Ada for loop declared?

	What are three differences between the for loop in Ada and Pascal?

What are three differences between the for loop in Ada and Java?

	The following code would be flagged as illegal by the Ada compiler

for i in 1..10 loop

 i := 5;

 ada.integer_text_io.put (i);

end loop;

Why?

	The following code is legal in Ada.

for i in -1 .. 1 loop
 ada.integer_text_io.put (i);
 for i in 3..3 loop
 ada.integer_text_io.put (i);
 for i in reverse 6..7 loop
 ada.integer_text_io.put(i);
 end loop;
 ada.text_io.new_line;
 end loop;
 end loop;

What would the output be if it were run?

Assuming i is declared previous to this code, what would the output be in the corresponding Java loop?

Assuming i is declared previous to this code, what would the output be in the corresponding Pascal loop?

	How many times would i be output if the following Ada loop was executed?

 num := 5;

 for i in 1..num loop

 ada.integer_text_io.put (i);

 num := 3;

 end loop;

How many times would i be output if the corresponding Java loop was executed?

How many times would i be output if the corresponding Pascal loop was executed?

	Ada, Java, FORTRAN, and Pascal all have iteration control structures. Choose two (2) forms of iteration control structures in any one (1) of these languages, show their syntax in pseudo code and describe clearly the major difference between them.
	

	5. Subprograms in FORTRAN, Java, Pascal, Ada

a. types

b. parameter modes

c. syntax

d. results
	What are two distinct types of subprograms present in all of these languages?

What is the major difference between them?

	How do each of the following languages pass their parameters?

FORTRAN

Java

Pascal

	What are Ada’s parameter modes

	In FORTRAN IV, a function returns its value by assignment to the function name. What type of function is available in Java, Pascal and Ada that this type of return mechanism prevents?
	Te following subproram is written in FORTRAN. If this program is called with actual parameters M and N holding 4 and 5 respectively, then after return from the subprogram, M and N will hold 5 and 4 respectively. What parameter mechanism does FORTRAN use that causes this?

SUBROUTINE SWAP (K, L)

 ITEMP = K

 K = L

 L = ITEMP

 RETURN

 END

If this subprogram were written in Java and called with M and N holding 4 and 5 respectively, what would M and N hold after return from the subprogram? What parameter mechanism does Java use that causes this?

If this subprogram were written in Pascal, the programmer could choose what M and N would hold after return from the subprogram. Describe how this is accomplished.

	The following code fragment uses arrays in Java. The first line declares and allocates an array of two integers. the next two lines initialize it.

 int[] A = new int [2]’

 A [0] = 0;

 A[1] = 2;

 f (A[0], A[A[0]]);

Function f is defined as

 void f (int x, int y)

 {

 x = 1;

 y = 3;

 }

For each of the following parameter-passing methods, say what the final values in the array A would be after the call to f.

a. by value (i.e. copy)

b. by reference (i.e. address)

c. by result (i.e. copy out)

d. by value-result (i.e. copy in, copy out)

e. by name - not yet
page 385 Webber, Modern Programming Languages, ex 6

	Briefly explain the following parameter passing mechanisms and the difference between them. For each, tell a language that uses it.

parameter passing by value

parameter passing by reference

parameter passing by result

parameter passing by value-result

page 101, exercise 15, Roosta

	What is the output of the following program written in Pascal syntax using the following parameter passing mechanisms:

a. pass by value

b. pass by reference

c. pass by result

d. pass by value-result

program test (output);

var i : integer;

 a : array [1..2] of integer;

procedure P(x,y : integer);

begin

 x := x + 1;

 i := i + 1;

 y := y + 1;

end;

begin

 a[1] := 1;

 a[2] := 1;

 i := 1;

P(a[i], a[i]); (* here’s the problem line *)

writeln (a[1]);

writeln (a[2]);

end.

page 101, exercise 16, Roosta (have some doubts about this one)
	

	6. Grammars

a. components

b. purposes

c. BNF vs EBNF

d. pre-conditions

e. Dr. Grove’s material

f. limitations
	What were three (3) of the things that the BNF for Mini-Language Core was not able to specify?

	What are the component parts of a grammar?
	What are the two main purposes of a grammar? (i.e. what can we do with one?)

	Given the following context-free grammar:

S → 0S | 1A

A → 0S | 1B

B → 0S | 1C | 1

C → 1C | 0C | 1 | 0

Generate 3 valid sentences in this language

page 117, example 4.7 Roosta
	Given the following grammar

G = ({S,A}, {0,1}, P, S) represented by the following production rules where ℇ is the empty string which has length 0.
 S → 0A1

 A → 0A1

 A → ℇ
Generate 3 valid sentences in this language.

Tell in words what the sentences in this language look like.

page 118, example 4.9 Roosta

	Assume the following grammar:

< assign > ::= < id > := < expr >

< id > ::= A | B | C

 < expr > ::= < id > + < expr >

 < expr > ::= < id > * < expr>

 < expr > ::= (< expr>)

 < expr> ::= < id >

Show a parse tree and a left-most derivation of the following statement:

 A := A * (B + (C * A))

page 136, problem 8, Roosta
	Using the following syntactic specifications, demonstrate the ambiguity of the grammar by displaying two derivation tress fo the expression a+b+c

<expression> ::= <element> | <expression><operator><epression>

<element> ::= <numeral> | <variable>

<operator> ::= + | -

<variable> ::= a|b|c

page 137 , problem 15, Roosta

	Consider the following productions:

<pop> ::= [<bop> , <pop>]

<pop> ::= <bop>

<bop> ::= <boop>

<bop> ::= (<pop>)

<boop> ::= x

<boop> ::= y

<boop> ::= z

for each of the following strings, show every step in the derivation tree that proves that the string belongs in the grammar

z

(x)

[y]

[(x),y]

[(x), [y,x]]

page 137, #13, Roosta
	Prove that the following grammar is ambiguous but first, tell what it means for a grammar to be ambiguous.

<S> ::= <A>

<A> ::= <A> + <A>

<A> ::= <id>

<id> ::= a|b|c

page 136, problem 9, Roosta

	Assume that we have the following production rules

<expression > ::= <number>

<expression> ::= <expression> + <expression>

<expression> ::= <expression> - <expression>

<expression> ::= <expression> * <expression>

<number> ::= 40 | 3 | 9

Is the expression 40-3-9 ambiguous?

Prove that it is or it isn’t

page 136, problem 10 Roosta
	Copnsider the following grammar specifications:

 <E> ::= <E> * <E>

 <E> ::= <E> & <E>

 <E> ::= c

Give a derivation and parse tree for the string c*c&c&c*c

Prove that the grammar is ambiguous

modification of p 138, problem 20, Roosta

	Given the following grammar

G = ({S,T}, {a,b}, P, S) represented by the following production rules where ℇ is the empty string which has length 0.
S → aaTb

 T → aaTb

 T → ℇ
Generate 3 valid sentences in this language.

Tell in words what the sentences in this language look like.

 variation of page 138, problem 19 , Roosta
	

	7. Exception handling in FORTRAN, Java, Pascal, Ada
	Describe the exception handling mechanisms we have seen in two (2) of the following four (4) languages: FORTRAN, Java, Pascal, Ada

	What is the difference in approach to exception handling between Java and Ada?
	Describe what happens when an exception occurs in Java

	
	

	8. All of Chapter 1 in our text

a. why study languages

b. how to evaluate languages

c. influences on language design

d. language categories

e. language design trade-offs

f. implementation methods
	What are three (3) desireable characteristics of a programming language?

	What do we gain from studying a variety of programming languages?
	It has been said that “languages shape the way we think”. With regard to the domain of programming languages, do you agree or disagree with that statement? Explain why you agree or disagree and give examples to illustrate your choice.

	In order for high level programming languages to be run on computers they must be translated into the machine language of the computer they are running on. What are the two methods of translation we have talked about? Describe the major difference between them.
	The two common methods of translation from high level programming language to machine language are compilation and interpretation.

Tell what methods are used by each of the following languages:

FORTRAN

Java

Pascal

	9. Data types in FORTRAN, Java, Pascal, Ada

a. scalar

b. structured

c. type compatibility

d. type checking
	Describe two (2) ways in which FORTRAN differs from Ada with regard to data type

	What are the scalar types we studied in FORTRAN?

What are the scalar types we studied in Pascal?

	Pascal has a structured data type called a record. FORTRAN IV’s only structured data type is an array. Given the following Pascal declaration for an array of records, write the necessary FORTRAN declarations to manipulate the same data.

InfoRecord = Record

 number : integer;

 earnings, tax : real;

end;

EmployeeRecords = Array [1..100] of InfoRecord

	Assuming that X has been declared to be a floating point number and assigned the value 98.7 and that N has been declared to be an integer and assigned the value 25,

What is the result of adding X and N and storing the result in N in FORTRAN? Describe what happened and why?

What is the result of adding x and n and storing the result in X in Ada? Describe what happened and why.

	

	10. Dr. Bernstein’s material

	

	11. Chapter 2 in our text on FORTRAN, Java, Pascal

 and Ada
	

	12. Basic statements

a. types
	What are the five basic types of statements that we generally expect to find in a programming language.

For one (1) of these types of statements, pick two (2) of the languages we have written programs in this semester (FORTRAN, Java, Pascal and Ada) and describe two (2) differences between them.

	13. Miscellaneous

a. DOS compilation commands

b. use of files

c. redirection

	What is a potential problem that occurs when using DOS redirection to send a program’s output to a file?

	When using files in Pascal, what are the necessary actions that must occur? (you may either give a series of code statements or describe in words)
	When using files in Pascal, if you neglect to close the files when you are done with them, what problem may occur?

	Given the following FORTRAN code and a line of input consisting of the digits shown below with no spaces between them , what would be stored in the variables and what would the output be?

1234567898765432123456789

 READ (5, 13) X, Y, I, Z

13 FORMAT (F3.2, 1X, F7.3, I4, F2.1)

WRITE (6, 14) X,Y,I,Z

14 FORMAT (1X, F5.2, 2X, F8.3, 1X, I5, 1X, F3.1)

1234567898765432123456789

 1.23 5678.987 6543 2.1
	Given the following FORTRAN code and a line of input consisting of the digits shown below with no spaces between them , what would be stored in the variables and what would the output be?

1234567898765432123456789

 READ (5, 13) X, Y, I, Z

 13
FORMAT (F3.2, 1X, F7.3, I4, F2.1)

 WRITE (6, 14) X,Y,I,Z

 14 FORMAT (1X, F5.2, 2X, F7.2, 1X, I5, 1X, F3.1)

 STOP

 END

1234567898765432123456789

 1.23 5678.99 6543 2.1

	Given the following FORTRAN code and a line of input consisting of the digits shown below with no spaces between them , what would be stored in the variables and what would the output be?

1234567898765432123456789

READ (5, 13) X, Y, I, Z

 13
FORMAT (F3.2, 1X, F7.3, I4, F2.1)

 WRITE (6, 14) X,Y,I,Z

 14 FORMAT (1X, F5.2, 2X, F7.3, 1X, I5, 1X, F3.1)

 STOP

 END

12345678987654321234567898

 1.23 ******* 6543 2.1
	

	14. Chapter 5

a. textbook

b. slides
	

