Programming Language Project

Question Set #1

Name: Andrew Kennedy

 Programming Language: Tcl

1.
What is the URL for this language?

URLs in report did not work when I looked them up.

I found:

http://www.tcl.tk/

2.
What individual or what company developed the language?

Dr. John Ousterhout while working for Sun Microsystems, Inc.

3.
What paradigm is it an example of?

(refer to text for list to make sure you understand this question)

I could not find a list of paradigms in the text but I did see the object-oriented software development paradigm and procedure-oriented paradigm given as examples usually used with imperative languages. In the report, the author describes TCL as a textual programming language meant for issuing commands to interactive programs such as text editors or shells.

4.
What domain is it useful in?

(refer to text for list to make sure you understand this question)

It is useful in the Scripting Language Domain.

5.
Is the language compiled or interpreted?

This language is interpreted.

Programming Language Project

Question Set #2

Name: Andrew Kennedy

Programming Language: Tcl

1. How is the syntax of your language described? (i.e. using BNF, with syntax diagrams, with examples, in words)

In the report, an example of syntax description is his description of the syntax of the if-else control structure:

if {condition1} {body1} elseif {condition2} {body2} elseif …? ?else {bodyN}

This isn’t exactly BNF notation but it is similar.

On the web I found a site that describes the syntax in words, due to its simplicity. The site URL is http://www.tcl.tk/scripting/syntax.html and an example of its description of syntax is the description of the use of the $ character:

$foo The dollar sign ($) substitutes the value of a variable. In this example, the variable name is foo.

The site also uses code examples to illustrate the syntax, for example:

Below is a Tcl command that prints the current time. It uses three Tcl commands: set, clock, and puts. The set command assigns the variable. The clock command manipulates time values. The puts command prints the values.
set seconds [clock seconds]

puts "The time is [clock format $seconds]"
Note that you do not use $ when assigning to a variable. Only when you want the value do you use $. The seconds variable isn't needed in the previous example. You could print the current time with one command:
puts "The time is [clock format [clock seconds]]"

With regard to variable names (not values)
2. What characters are allowed (i.e. letters, underscores, numbers, etc.)
 The report does not list the allowable characters for variable names, but on the web it says that “you can use any character in a variable name.”

With regard to variable names (not values)
3. What is the maximum length allowed and how many characters are significant? (not a bad idea to indicate compiler)

Again, the report does not indicate the maximum allowable length of a variable name. The website I found (same as above) states that by default the interpreter assumes that variable names only contain letters, digits, and the underscore. However, if you use curly braces to delimit the variable name then it can contain any characters at all. This is just not recommended.

4. What is the assignment operator in your language?

 In TCL you assign a value to a variable using the set command. For example:

set name “John”

This code sets the string “John” to the variable name. Variables do not need to be declared in TCL, as the interpreter creates the variable itself when it is assigned a value.

5. Does your language have reserved words and/or key words ? If your language does something strange, include examples.
 Yes, he lists all of the reserved words in the report on page 2. There are 86 reserved words in all, according to the table in the report. Online I found a list of the core TCL commands, which lists 77 of the 86 words found in the report, however it did not call them reserved words. At another site I found, http://www.lugatgt.org/articles/intro_tcl/ it was stated that TCL is unique in that it has commands, but no reserved words. In the report, however, he has the table on page 2 labeled “reserved words.” I also found another site: http://www.tcl.tk/man/tcl8.4/TclCmd/contents.htm that lists 108 TCL commands.

6. Show a typical assignment statement

 set name “John”

As shown above in question #4, this assigns the string “John” to the variable name.

Another example would be:

set b 5

This would set the value 5 to the variable b.

7. What types of selection statements are available in your language? (compared to any of the languages we have already looked at which have had various flavors of ifs and case statements) FORTRAN had the arithmetic IF and the computed GOTO. Your language may have something different.
 The selection statements available to TCL programmers include the if-else command and the switch command.

The general syntax for if-else is as follows:

if {condition1} {body1} elseif {condition2} {body2} elseif …? ?else {bodyN}

And looks something like this:

if {$num == 1} {

statement

} elseif {$num == 2} {

statement

} else {

statement }

The general syntax for switch is as follows:

Switch variable {condition1 {body1} condition2 {body2}…default {bodyN} }

And looks something like this:

Switch $num {

1 {statement}

2 {statement}

3 {statement}

default {statement}

}

8. What types of iterative statements are available in your language? (compared to any of the languages we have already looked at which have had various flavors of loops such as endless loops, counted loops, while loops, repeat loops).

 TCL includes the while loop, for loop, and foreach loop. The foreach loop is really the only iterative statement that is unique to TCL, and the syntax is:

Foreach variable {list_of_variables} {body}

It looks like this:

foreach letter {a b c d e} {

puts “$letter is in the alphabet”

}

output:

a is in the alphabet

b is in the alphabet

c is in the alphabet

d is in the alphabet

e is in the alphabet

Note: the puts command is how you handle output in TCL, which I will explain more in question 10.

9. Show a typical input statement in your language. (i.e. FORTRAN uses: read(5,20) X; Pascal uses: readln (X); Ada uses: get(X);)
 Input is handled by the gets command. The syntax for this command is:

gets channelID variable_name

where the channelID is the input channel and the second argument is the variable name.

An example of what the code would look like to input data into a variable called “name” would be:

gets stdin name

where “stdin” is the standard input channel.

10. Show a typical output statement in your language.

Output is handled by the puts command. It is extremely simple in that all you have to do is write puts and then whatever you want output you enclose in “ ”. For example:

puts “I deserve ten extra points for this homework just because.”

This would output the line:

I deserve ten extra points for this homework just because.

Programming Language Project

Question Set #3

Name: Andrew Kennedy

 Programming Language: TCL

The first 4 questions are about comments in your language. ? In some languages comments were required to start at column 1 and nothing else could be on the line; in other languages comments started midway through the line and no code could follow them on the same line; in some languages comments could be embedded in the code; In some languages single comments could extend over several lines.

1. Show a typical comment in your language

This is a typical comment for TCL

2. Where does a comment begin, end

A comment begins with the # character, and ends with the end of the line. So in order to write multiple line comments, you must begin each line with a #.

3. Where can it be placed?

Comments in TCL can be placed on a line by itself or if you place a ; before the # on the same line as some code, you can use the remainder of the line as a comment. For example:

puts $val ;#this line will output the value contained in the variable val

So the line is executable up to the semicolon, and the rest is a comment.

4. Can a single comment extend over more than one line?

No, in order to write a multiple line comment you must place a # at the beginning of each line.

5. Is your language case sensitive?

Both variable names and procedure names in TCL are case-sensitive. This was not in the report. I found this information on the web at http://philip.greenspun.com/tcl/introduction.adp.

6. Does your language allow and/or require type declarations?

TCL variables do not have types, any variable can hold any value. I found this information at http://www.tcl.tk/advocacy/primer.html.

7. What are the scalar data types, if any, in your language?

In TCL when a variable is created by setting a value to a name, the variable is simply stored as the value in scalar string form. The value will then be changed into an integer or a floating point number if certain operations are performed on them. For example:

set a 7

incr 7

After the first command, the variable a contains the string “7” but after the second line the variable becomes an integer so that you can increase it by one. I found this information at http://wiki.tcl.tk/446.

8. What are the structured data types, if any, in your language?

TCL contains implementations for Arrays and Strings. The interesting thing about the array object in TCL, however, is that it can function similarly to a record object in other languages. This is made possible because you can call the indices of the array anything you wish; they do not need to be integers. For example:

set my_dog(name) “Cletus”

set my_dog(age) “7”

set my_dog(breed) “German Shepherd and Black Labrador”

This will create an array with indices (name, age, breed) and the respective values in each index (Cletus, 7, German Shepherd and Black Labrador)

9. Does your language have any other data types (i.e. pointers???)

Yes, TCL contains Lists, Handles, and Widgets as well. A List is basically a collection of Strings and they can be nested within each other. They are useful for representing trees, among other things. Handles are similar to pointers in TCL. A handle is a synthetic String value created by TCL to represent the actual pointer. A widget is a term used in graphical user interface circles in connection to some component of a GUI application. While most widgets have the potential of visual representation, this need not be the case. For instance, container widgets like frames don't actually show up on the screen.

10. How are strings handled in your language? (look at our text for a description of the possible choices before answering this question).

In TCL, strings are considered a scalar type. All variables, when first created, are of this type. The length of the strings is dynamic, and the value of a variable can be switched at any time. This answers what the book lists as the two most important design issues specific to character string types, which are: whether a string should be simply a special kind of character array or a primitive data type, and whether strings should have static or dynamic length. The report discusses strings briefly, stating how the most prevalent data type in the language is the string type, which makes sense in that it was created to be a scripting language. It also mentions four of the functions used to manipulate strings in TCL which are: length, index, range, and first. The length function displays the length of the string, the index function retrieves the letter from the given index, the range function lists the characters within the range given, and the first function finds the first occurrence of a particular letter.

Programming Language Project

Question Set #4

Name: Andrew Kennedy

Programming Language: TCL

1. Where did you find a compiler/interpreter?

I found my interpreter, Tcl/Tk 8.4.7, at this website: http://prdownloads.sourceforge.net/tcl/tcl847-src.zip

2. What was the name of the file you downloaded to install it?

 The file was called “tcl847 –src.zip.”

3. What are the steps you used to install it (i.e. provide the directions you actually followed to install it).

Here is what the instructions say about how to install:

If you are building with Visual C++, in the "win" subdirectory of the source release, you will find "makefile.vc". This is the makefile for the Visual C++ compiler and uses the stock NMAKE tool. Detailed directions for using it, are in the comments of "makefile.vc". A quick example would be:

C:\tcl_source\win\>nmake -f makefile.vc

Then, in the makefile.vc file it says:

You'll need to run vcvars32.bat contained in the MsDev's vc(98)/bin directory to setup the proper environment, if needed, for your current setup. This is a needed bootstrap requirement and allows the swapping of different environments to be easier.

I ran the vcvars32.bat file from Microsoft visual studio first, then I ran the command displayed above using the nmake tool to execute the makefile.vc.

4. How do you compile/interpret a program? (i.e. What command do you issue?)

You simply run the Tclsh84 application and it will open a command-prompt window in which you can type any Tcl command you wish and it will interpret the code as you go along. Or you can also enter code into a text editor, save it, and call it in the tclsh84 program.

5. What environment are you using to edit the code?

 I use notepad to edit the source code.

6. How do you run a program? (show the command)

You interpret a program by using a shell. In my case, the shell is called by this command:

Tclsh84 <filename>.tcl

7. Attach the source code for a short program that you have interpreted/compiled and run. The program does not have to achieve any meaningful task but must include statements illustrating 3 of the answers you provided to questions 6,7, 8,9, and 10 from question sets #2. It must include line by line comments identifying the type of statement AND the requirements for the statement. Circle the type of statements you are illustrating.

a. Assignment

b. Selection

c. Iteration

d. Input

e. Output

set person_info(name) "Drew"

set person_info(age) "20"

set person_info(occupation) "student"

foreach thing {name age occupation} {

puts "$thing = $person_info($thing)"}

8. Capture the output produced by your program (screen capture). Print it and attach it also.

[image: image1.png]=l

ccupation = student

source code:

set person_info(name) "Drew"

set person_info(age) "20"

set person_info(occupation) "student"

foreach thing {name age occupation} {

puts "$thing = $person_info($thing)"}

Programming Language Project

Question Set #6

Name: Andrew Kennedy

Programming Language: Tcl

1. Attach the source code for a short program that you have interpreted/compiled and run. The program does not have to achieve any meaningful task but must include statements illustrating 3 additional answers from question set #2 (the answers to questions 6,7, 8,9, and 10 that you didn't already illustrate in question set #4). It must include line by line comments identifying the type of statement AND the requirements for the statement. Circle the type of statements you are illustrating.

a. Assignment
- ‘set’ command

b. Selection
- Switch statement

c. Iteration
- for loop

d. Input

- ‘gets’ command

e. Output
- ‘puts’ command

Andrew Kennedy

CS 430 Fall '04

11-22-04

Language: Tcl

Interpreter: Tclsh84

Filename: random2.tcl

This program will prompt the user to enter a one-character symbol (though it will

handle any number of characters for the symbol) and then it will print out a triangle

using the symbol the user entered.

This first line is an output statement that prompts the user for a symbol

puts "Enter a one-character symbol please: "

This line handles the user's input, where 'stdin' is the standard input channel and

'symbol' is the variable name to which the symbol the user enters will be assigned

gets stdin symbol

This is an example of a for-loop. The syntax is:

#
for {initialize var} {condition} {reinitialize var} {body}

for {set i 1} {$i<6} {incr i 1} {

The following few lines are an example of the if-elseif-else selection statement.

The general syntax for such statements is:

#
if {condition} {body} elseif {condition} {body} else {body}

and, of course, you can have as many elseif statements as you want.

if {$i == 1} {

puts "$symbol"

} elseif {$i == 2} {

puts "$symbol $symbol"

} elseif {$i == 3} {

puts "$symbol $symbol $symbol"

} elseif {$i == 4} {

puts "$symbol $symbol $symbol $symbol"

} else {

puts "$symbol $symbol $symbol $symbol $symbol" }

}

2. Capture the output produced by your program (screen capture). Print it and attach it also. [image: image2.png]=l

¢ tclsh84 randon2.tcl
Enter a one-character symbol please:

SRS
>as
>

3. Does your language provide any exception handling mechanisms?

Yes, Tcl commands can generate an error condition when there is a problem (command invoked with invalid arguments, runtime error, etc.) that will interrupt the program and cause Tcl to output an error message before terminating. Tcl also implements a stack trace, which, upon receiving an error, will indicate the nesting of the erroneous command within control structures and procedure bodies. So in other words, it will tell you exactly where, in the code, the error occurred. This information was not in the report. I found it at http://www.lib.uchicago.edu/keith/tcl-course/topics/exceptions.html, along with the information for #4 and 5.

4. If it does, provide a description of what happens on erroneous input. If it doesn't describe what happens when on erroneous input.

There is no erroneous input in Tcl because anything can be input since it will be handled as a string. However, the programmer can use the error command to throw an error message if a certain condition is not met.

5. Can the user define their own exception handlers?

Using the ‘error’ command, the user can define an error condition that will cause the program to terminate execution and (optional) output an error message. The syntax for this command is:

error message ?info? ?code?
There is also a ‘catch’ command which will allow the user to catch a desired error and, without terminating the program, indicate that an error has occurred and execute whatever code the programmer wants. The syntax for this command is:

catch body ?var?
6. What types of subprograms does your language have (i.e. functions, procedures), if any?

In Tcl the only subprogram is the procedure. This involves using the ‘proc’ command, which creates a new Tcl procedure. The general syntax for the proc command is as follows:

proc <procedure_name> <args> { body }

7. What is the parameter passing mechanism in your language?

In Tcl parameters can be passed in, in-out, or out. Also, args specifies the formal arguments to the procedure. It consists of a list, possibly empty, each of whose elements specifies one argument. Each argument specifier is also a list with either one or two fields. If there is only a single field in the specifier then it is the name of the argument; if there are two fields, then the first is the argument name and the second is its default value. This information was also not in the report, and I found it online at http://tmml.sourceforge.net/doc/tcl/proc.html

8. Does your programming language allow recursive calls?

Yes, Tcl does allow for recursive calls. There is even a procedure that can be called to set the limit of maximum nested recursive calls for the interpreter called Tcl_SetRecursionLimit (interp, depth), where interp is the interpreter, and depth is the new limit.

Programming Language Project

Question Set #7

Name: Andrew Kennedy

Programming Language: Tcl

1. What was the most difficult thing for you to master in your language?
The most difficult aspect of Tcl, for me, was mastering the use of the $ character to indicate whether a value was a variable value or a variable name. It was somewhat tricky to figure out whether I needed to use the $ if I was passing in a variable as a parameter for a procedure. This was not a huge problem, as I could always rely on trial and error to figure it out, since either way there is a 50% chance that I needed to include it. It also became more clear when I realized the similarities between that method and the method C++ uses to indicate pointers with the * character.

2. What feature of your language did you really like that you hadn't seen before in another language?
My favorite aspect of Tcl was the way it handled variable assignments. It was great to not have to worry about what type a variable was because I knew it would automatically adjust the type to agree with whatever operations were imposed upon it. I didn’t get into any tricky programs where this could have become confusing, but I’m sure there are situations or problems where this method could become quite confusing for the programmer and make readability difficult, since there is no conspicuous indicator of type for any variables.

3. Describe a problem or type of problem that is easy to solve in your language that would be more difficult if not impossible to solve in another language (preferably one that we have looked at).
A problem that would be particularly easy to solve in Tcl would be one requiring the iteration through a specific series of items, each with a different, seemingly unrelated variable name. In other words, it is simple to create an array in Tcl that uses names other than integers for the index. Here is the code that would basically handle building an array with five different elements, each with a descriptive name, and then iterating through the elements and printing them out. Note that this really wouldn’t be particularly difficult for another language unless there were a significantly large number of elements.

set a(Hi) "word1"

set a(My) "word2"

set a(Name) "word3"

set a(Is) "word4"

set a(Drew) "word5"

foreach thing [array names a] { puts "$thing = $a($thing)" }

This code yields the output:

Is = word4

Name = word3

Hi = word1

Drew = word5

My = word2

While the apparent randomness of how the elements are added to the array could prove to be a hindrance, you can still see the ease of iterating through a group of variables with random names in Tcl.

4. What is the language in which the problem described above would be difficult to solve?
This problem would be more difficult to solve in Ada or Java, for example, because you would have to do it in one of two ways (that I can think of) and you would lose the simplicity of the Tcl method of arrays. You could choose to use two parallel arrays, one which holds all strings (the variable names) and one that holds all the variable values, whatever type they may be. Or you could try to use an enumerated type to store the variable names and somehow assign a specific value to each value of the enumerated type to act as a sort of mock-array.

5. Do you think the entire class should learn this language the next time this course is taught?
No, I don’t think this language is as important as any of the languages we have studied this semester.

6. Give your reason(s) for your answer to the previous question.

Tcl does contain some interesting implementations of type declaration (or lack thereof) and a few other unique features. However, Tcl’s usefulness lies in its use of scripts, and it would be much more complicated to learn, which would probably require too large a block of class time with respect to its usefulness and applicability to any of us. I don’t think the language is really important enough to go into the detail it would require to get an accurate picture of what you can do with it.

7. What did you learn from learning this language?
This language gave me more experience with interpreted languages, rather than compiled languages. It also helped me to see even more variability in implementations of fundamental programming concepts, most notably arrays and variable type declarations. Additionally it helped me to learn how to teach myself about a new language and to figure out how to find a compiler/interpreter without much help.

8. If you are asked on the final to give a brief description of your language (1 or 2 sentences) what will you say?
Tcl is an interpreted language that has a very simple syntax and can be used in standalone applications or be embedded in other larger applications.

9. Would you like to have the responses to everyone's project questions?
I would like to have access to all the other projects so that I could choose whichever languages I wanted to have more information about. I wouldn’t want everyone’s project questions though.

10. What question should have been part of the project questions that wasn't included?
Since Tcl is a relatively simple language as far as syntax goes, I don’t think there is any other pertinent information that was not covered in any of the question sets. Specific to Tcl it may have been useful to learn about scripts and how those work, as I really don’t understand what scripts are used for.

