Assignment #13

 

Here’s a solution to Assignment #12 problem 18 from section 2.4 on page 139

to prove:

F(1) + F(3) + ... + F(2n-1) = F(2n)  where the F’s represent Fibonnacci numbers

 

F(1) = 1  by definition

2n+3

2n+2

2n+1

2n

2n-1

2n-2

2n-3

 

Definitions of Fibonacci numbers to remember 

F(2n) = F(2n-1) + F(2n-2) 

F(2n-1) = F(2n-2) + F(2n-3)

F(2n+1) = F(2n) + F(2n-1)

F(2n+2) = F(2n+1) + F(2n)

 

 

 

 

 

 

 

 

F(1) + F(3) + ... + F(2k-1)                     = F(2k)        ASSUMED

F(1) + F(3) + ... + F (2k-1) + F(2(k+1)-1)          = F(2(k+1))   TO PROVE

F(1) + F(3) + ... + F( 2k–1) + F(2k+2-1)    = F(2k+2)

F(1) + F(3) + ... + F( 2k-1)    + F(2k+1)

        F(2k)                        + F(2k+1)

note that above line matches green line in box so

                          F(2k+2)                    = F(2k+2)     PROVED

             

Written assignment

Section 2.4 page 139

6

14

19

39

41